Commit source

This commit is contained in:
kradchen
2023-05-18 16:04:27 +08:00
parent 88cf81e4ea
commit c6cd188732
83 changed files with 39921 additions and 0 deletions

View File

@@ -0,0 +1,9 @@
project(TranDetection)
find_package (OpenMP REQUIRED)
file(GLOB_RECURSE cpp_files ./src/*.cpp)
add_library(TranDetection SHARED ${cpp_files} )
target_include_directories(TranDetection PRIVATE ./src)
target_link_libraries(TranDetection PRIVATE OpenMP::OpenMP_CXX fftw3f)
target_compile_options(TranDetection PRIVATE ${OpenMP_CXX_FLAGS} -march=native)
set_target_properties(TranDetection PROPERTIES PUBLIC_HEADER
${CMAKE_CURRENT_LIST_DIR}/src/calculateBankDetectAndHilbertTransformation.hpp)

View File

@@ -0,0 +1,191 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include "fftw3.h"
#include <omp.h>
#include "mathMethods.hpp"
#define REAL 0
#define IMAG 1
#define FFTW_WISDOM_TYPE FFTW_MEASURE
/**
* Calculation of hilbert transformation and ...
*
* @param aScan_r, array containing aScans
* @param aScansRef_r, array containing corresponding reference aScans
* @param numberScans, defining the number of scans in the ascn arrays
* @param numberSamples, defining the number of samples of the sacns in the aScan array
* @param RESAMPLE_FACTOR, used resample factor
* @param nthreads, number of threads used for fft and omp for loop parallelisation
* @param[out] resDetect, result of maximum detection
* @param[out] resEnvelope, result of envelope of aScan
* @param[out] resEnvelopeRef, result of envelope of reference aScan
*
**/
int calculateBankDetectAndHilbertTransformation(float* aScans_r, float* aScansRef_r,int numberScans, int numberSamples, int RESAMPLE_FACTOR, int nthreads, float* resDetect, float* resEnvelope, float* resEnvelopeRef) {
// resampling infos
int nresample_c; // for complex hermetian symmetry for upsample 2 -> stays the same (!)
int nresample_r; // for real from hermetian symmetry for upsample 2 -> stays the same (!)
float scale;
bool even;
// indices
int index;
int index_outer;
int firstHalf;
int endIndex;
// interim results
static fftwf_complex* resultCrossCor_c = NULL;
static fftwf_complex* aScans_c_res = NULL;
static fftwf_complex* aScansRef_c_res = NULL;
static fftwf_complex* aScans_c = NULL;
static fftwf_complex* aScansRef_c = NULL;
float* resultCrossCor_r;
float* aScans;
// fftw plans
static fftwf_plan plan_fftAScans_rc = NULL;
static fftwf_plan plan_ifftAScans_cr = NULL;
static fftwf_plan plan_ifftAScans_cc = NULL;
// fftw wisdom
char filenameFftwWisdom[200] = "";
// precalculations
nresample_r = numberSamples * RESAMPLE_FACTOR;
nresample_c = numberSamples * RESAMPLE_FACTOR / 2;
scale = float((1.0 / nresample_r)* RESAMPLE_FACTOR);
even = (nresample_r / 2.0);
// load wisdom
sprintf(filenameFftwWisdom, "fftwf_wisdom_detection_%d.wis", FFTW_WISDOM_TYPE);
int loadedWisdomUsed = 0;
if(fftwf_import_wisdom_from_filename(filenameFftwWisdom) == 0) {
// printf("wisdom not loaded.\n");
} else {
loadedWisdomUsed = 1;
// printf("wisdom loaded.\n");
}
// mem alloc
resultCrossCor_c = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * numberScans * nresample_r);
aScans_c_res = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * numberScans * nresample_r);
aScansRef_c_res = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * numberScans * nresample_r);
resultCrossCor_r = (float*)malloc(numberScans * nresample_r * sizeof(float));
aScans_c = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * numberScans * numberSamples);
aScansRef_c = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * numberScans * numberSamples);
aScans = (float*)malloc(numberScans * numberSamples * sizeof(float));
/* fftw initializations */
// thread ini
if ((nthreads > 0)) {
if (fftwf_init_threads() == 0){
printf("Data input are not the same size. Exiting.");
return 1;
}
fftwf_plan_with_nthreads(nthreads);
}
// plan creations
plan_fftAScans_rc = fftwf_plan_many_dft_r2c(1, &numberSamples, numberScans, aScans, NULL, 1, numberSamples, aScans_c_res, &nresample_r, 1, nresample_r, FFTW_WISDOM_TYPE);
plan_ifftAScans_cr = fftwf_plan_many_dft_c2r(1, &nresample_r, numberScans, resultCrossCor_c, NULL, 1, nresample_r, resultCrossCor_r, &nresample_r, 1, nresample_r, FFTW_WISDOM_TYPE);
plan_ifftAScans_cc = fftwf_plan_many_dft(1, &numberSamples, numberScans, aScans_c_res, NULL, 1, nresample_r, aScans_c, &numberSamples, 1, numberSamples, 1, FFTW_WISDOM_TYPE);
// DFT of input signals
fftwf_execute_dft_r2c(plan_fftAScans_rc, aScans_r, aScans_c_res);
fftwf_execute_dft_r2c(plan_fftAScans_rc, aScansRef_r, aScansRef_c_res);
/* Calculus of fft(tab1)* conj(fft(tab2)) (first part) */
/* and calculations for hilbert transform */
/* even: 0, n/2 -> times 1; 1 to n/2 - 1 -> times2, other zero */
/* odd: 0 -> times 1; 1 to (n + 1)/2 - 1 -> times2, other zero */
#pragma omp parallel for num_threads(nthreads) default(shared) private(index, index_outer, firstHalf, endIndex, even)
for (int i = 0; i < numberScans; i++) {
index_outer = i * nresample_r;
resultCrossCor_c[index_outer][REAL] = (aScans_c_res[index_outer][REAL] * aScansRef_c_res[index_outer][REAL] + aScans_c_res[index_outer][IMAG] * aScansRef_c_res[index_outer][IMAG]);// / Normalization;// pow(Normalization[REAL], powerFactor);
resultCrossCor_c[index_outer][IMAG] = (aScans_c_res[index_outer][IMAG] * aScansRef_c_res[index_outer][REAL] - aScans_c_res[index_outer][REAL] * aScansRef_c_res[index_outer][IMAG]);// / Normalization;// pow(Normalization[REAL], powerFactor);
firstHalf = index_outer + (nresample_r / 2.0);
for (index = index_outer + 1; index < firstHalf; index++) // from second element onwards
{
resultCrossCor_c[index][REAL] = (aScans_c_res[index][REAL] * aScansRef_c_res[index][REAL] + aScans_c_res[index][IMAG] * aScansRef_c_res[index][IMAG]);// / Normalization;// pow(Normalization[REAL], powerFactor);
resultCrossCor_c[index][IMAG] = (aScans_c_res[index][IMAG] * aScansRef_c_res[index][REAL] - aScans_c_res[index][REAL] * aScansRef_c_res[index][IMAG]);// / Normalization;// pow(Normalization[REAL], powerFactor);
aScans_c_res[index][REAL] *= 2.0;
aScans_c_res[index][IMAG] *= 2.0;
aScansRef_c_res[index][REAL] *= 2.0;
aScansRef_c_res[index][IMAG] *= 2.0;
}
if (even){
firstHalf++;
}else{
aScans_c_res[firstHalf][REAL] *= 2.0;
aScans_c_res[firstHalf][IMAG] *= 2.0;
aScansRef_c_res[firstHalf][REAL] *= 2.0;
aScansRef_c_res[firstHalf][IMAG] *= 2.0;
}
endIndex = index_outer + nresample_r;
for(index = firstHalf; index<endIndex; index++) {
aScans_c_res[index][REAL] = 0.0;
aScans_c_res[index][IMAG] = 0.0;
aScansRef_c_res[index][REAL] = 0.0;
aScansRef_c_res[index][IMAG] = 0.0;
}
}
// Execute a IDFT plan
fftwf_execute(plan_ifftAScans_cr);
fftwf_execute_dft(plan_ifftAScans_cc,aScans_c_res,aScans_c);
fftwf_execute_dft(plan_ifftAScans_cc,aScansRef_c_res,aScansRef_c);
// maximum detection
maximumDetection(resultCrossCor_r, numberScans, nresample_r, resDetect);
// abs calculation, adapt scaling
for (int i = 0; i < numberSamples * numberScans; i++) {
resEnvelope[i] = sqrt(aScans_c[i][REAL] * aScans_c[i][REAL] + aScans_c[i][IMAG] * aScans_c[i][IMAG]) * scale;
resEnvelopeRef[i] = sqrt(aScansRef_c[i][REAL] * aScansRef_c[i][REAL] + aScansRef_c[i][IMAG] * aScansRef_c[i][IMAG]) * scale;
}
// Store Wisdom
fftwf_export_wisdom_to_filename(filenameFftwWisdom);
// clean
fftwf_destroy_plan(plan_fftAScans_rc);
fftwf_destroy_plan(plan_ifftAScans_cr);
fftwf_destroy_plan(plan_ifftAScans_cc);
fftwf_free(resultCrossCor_c);
fftwf_free(aScans_c_res);
fftwf_free(aScansRef_c_res);
fftwf_free(aScans_c);
fftwf_free(aScansRef_c);
free(resultCrossCor_r);
free(aScans);
// fftwf_cleanup_threads();
// fftwf_cleanup();
fftwf_forget_wisdom();
return 0;
}

View File

@@ -0,0 +1 @@
extern int calculateBankDetectAndHilbertTransformation(float* aScans_r, float* aScansRef_r,int numberScans, int numberSamples, int resampleFactor, int nthreads, float* resDetect, float* resEnvelope, float* resEnvelopeRef);

View File

@@ -0,0 +1,28 @@
#include <stdio.h>
/**
* Returns index of maximum value, for each row (scan)
*
* @param inArray array containing block of data (assumed to be 2D)
* @param n number data (scans)
* @param m number data points (samples)
* @param[out] outVector pointer to output array, calculated idx for each 0:n-1
*
**/
void maximumDetection(float* inArray, int n, int m, float* outVector) {
float maxVal;
for (int j = 0; j < n; j++) {
outVector[j] = 0;
maxVal = inArray[j*m];
for (int i = 1; i < m; i++) {
if (inArray[j * m + i] > maxVal) {
maxVal = inArray[j * m + i];
outVector[j] = i;
}
}
// printf("\n %i \n",outVector[j]);
}
}

View File

@@ -0,0 +1 @@
extern void maximumDetection(float* inArray, int n, int m, float* outVector);