Files
URDepends/TVALGPU/include/mat_vec_mul.h

351 lines
9.6 KiB
C
Raw Normal View History

2023-05-18 16:04:27 +08:00
/*
* mat_vec_mul.h
*
* Created on: Jul 13, 2011
* Author: ditlevsen
*/
#ifndef MAT_VEC_MUL_H_
#define MAT_VEC_MUL_H_
struct sparse_mm {
sparse_mat_device A_csc;
sparse_mat_device A_csr;
cusparseHandle_t cs_handle;
cusparseMatDescr_t descrA;
sparse_mm(const sparse_mat_host &A, cusparseHandle_t handle, cusparseMatDescr_t descriptor) :
A_csc(A), A_csr(A.dim_y, A.dim_x, A.nnz, sparse_mat_csr, false), cs_handle(handle),
descrA(descriptor)
{
/* Old CUDA 4.0 implementation for reference
HANDLE_ERROR(cusparseScsr2csc(cs_handle, A.dim_x, A.dim_y, A_csc.val(),
A_csc.ptr(), A_csc.ind(), A_csr.val(), A_csr.ind(),
A_csr.ptr(), 1, CUSPARSE_INDEX_BASE_ZERO));
*/
/* CUDA 10.1 adaption (Feb. 2021)
cusparseStatus_t cusparseScsr2csc(cusparseHandle_t handle,
int m,
int n,
int nnz,
const float* csrVal,
const int* csrRowPtr,
const int* csrColInd,
float* cscVal,
int* cscRowInd,
int* cscColPtr,
cusparseAction_t copyValues,
cusparseIndexBase_t idxBase)
*/
HANDLE_ERROR(cusparseScsr2csc(cs_handle,
A.dim_x, // m
A.dim_y, // n
A.nnz, // nnz
A_csc.val(), // csrVal
A_csc.ptr(), // csrRowPtr
A_csc.ind(), // csrColInd
A_csr.val(), // cscVal
A_csr.ind(), // cscRowInd
A_csr.ptr(), // cscColPtr
CUSPARSE_ACTION_NUMERIC, // copyValues
CUSPARSE_INDEX_BASE_ZERO)); // idxBase
/* TO DO: adaption to CUDA 11. Above function was replaced with the following function
cusparseStatus_t cusparseCsr2cscEx2(cusparseHandle_t handle,
int m,
int n,
int nnz,
const void* csrVal,
const int* csrRowPtr,
const int* csrColInd,
void* cscVal,
int* cscColPtr,
int* cscRowInd,
cudaDataType valType,
cusparseAction_t copyValues,
cusparseIndexBase_t idxBase,
cusparseCsr2CscAlg_t alg,
void* buffer)
*/
};
};
struct dense_mm {
mat_device A;
cublasHandle_t cb_handle;
dense_mm(const mat_host &A_host, cublasHandle_t handle) : A(A_host, true), cb_handle(handle) {};
};
inline cusparseStatus_t mat_vec_mul(cublasOperation_t transA, const sparse_mm &A, const float *x, float *y,
cudaStream_t stream=0)
{
int n, m;
const sparse_mat_device *mA;
const float alpha = 1;
const float beta = 0;
if(transA == CUBLAS_OP_N) {
n = A.A_csr.dim_x;
m = A.A_csr.dim_y;
mA = &A.A_csr;
} else {
n = A.A_csr.dim_y;
m = A.A_csr.dim_x;
mA = &A.A_csc; // implicit transponation...
}
/* Old CUDA 4 implementation
HANDLE_ERROR(cusparseSetKernelStream(A.cs_handle, stream)); // one problem here
*/
/* CUDA 10.1 adaption (Feb. 2021)*/
HANDLE_ERROR(cusparseSetStream(A.cs_handle, stream));
/* Old CUDA 4 implementation
return cusparseScsrmv(A.cs_handle, CUSPARSE_OPERATION_NON_TRANSPOSE, m, n, 1, A.descrA, mA->val(),mA->ptr(), mA->ind(), x, 0, y);
*/
/* CUDA 10.1 adaption (Feb. 2021)
cusparseStatus_tcusparseScsrmv(cusparseHandle_t handle,
cusparseOperation_t transA,
int m,
int n,
int nnz,
const float* alpha,
const cusparseMatDescr_t descrA,
const float* csrValA,
const int* csrRowPtrA,
const int* csrColIndA,
const float* x,
const float* beta,
float* y);
*/
cusparseStatus_t status;
status = cusparseScsrmv(A.cs_handle,
CUSPARSE_OPERATION_NON_TRANSPOSE,
m,
n,
A.A_csr.nnz,
&alpha,
A.descrA,
mA->val(),
mA->ptr(),
mA->ind(),
x,
&beta,
y);
return status;
}
inline cublasStatus_t mat_vec_mul(cublasOperation_t trans, const dense_mm &A, const float *x, float *y,
cudaStream_t stream=0) {
int n = A.A.dim_x;
int m = A.A.dim_y;
cublasStatus_t status;
float alpha=1, beta=0;
HANDLE_ERROR(cublasSetStream(A.cb_handle, stream));
status = cublasSgemv(A.cb_handle, trans, m, n, &alpha, A.A.data_dev_ptr(), A.A.leading_dim(), x, 1, &beta, y, 1);
HANDLE_ERROR(cublasSetStream(A.cb_handle, 0));
return status;
}
__device__ float atomicAdd_cc1(float* address, float val) {
int* address_as_int = (int*)address;
int old = *address_as_int, assumed;
do {
assumed = old;
old = atomicCAS(address_as_int, assumed, __float_as_int(val + __int_as_float(assumed)));
} while (assumed != old);
return __int_as_float(old);
}
// To do: atomic operations...!!
__device__ void mult_element(cublasOperation_t transA, int ray, int x_pixel, int y_pixel, int z_pixel, int dim_x, int dim_y, float scale_factor, const float *x, float *y) {
int lin_index = x_pixel*dim_y + y_pixel + z_pixel*dim_x*dim_y;
if(transA == CUBLAS_OP_N) {
y[ray] += x[lin_index] * scale_factor;
} else {
#if __CUDA_ARCH__ < 200
atomicAdd_cc1(y + lin_index, x[ray] * scale_factor);
#else
atomicAdd(y + lin_index, x[ray] * scale_factor);
#endif
//y[lin_index] += x[ray] * scale_factor;
}
}
__global__ void dyn_calc_kernel(cublasOperation_t transA, int num_emitters, int num_receivers, int rv_x, int rv_y, int rv_z,
float scale_factor, const int *x_receivers, const int *y_receivers, const int *z_receivers, const int *x_emitters,
const int *y_emitters, const int *z_emitters, const float *x, float *y) {
int index_r, index_e, inc_r, inc_e;
int d1, d2, d3, inc1, m1, inc2, m2, inc3, m3, x_pixel, y_pixel, z_pixel, ray, err_1, err_2;
int *pixel1, *pixel2, *pixel3;
// different assignment of paths to threads for multiplication with or without transposition
// (performance reasons)
// no transposition: x-> receivers, y-> emitters
// transposition: x-> emitters, y-> receivers
if(transA == CUBLAS_OP_N) {
index_r = threadIdx.x + blockIdx.x * blockDim.x;
index_e = threadIdx.y + blockIdx.y * blockDim.y;
inc_r = blockDim.x * gridDim.x;
inc_e = blockDim.y * gridDim.y;
} else {
index_e = threadIdx.x + blockIdx.x * blockDim.x;
index_r = threadIdx.y + blockIdx.y * blockDim.y;
inc_e = blockDim.x * gridDim.x;
inc_r = blockDim.y * gridDim.y;
}
for(int receiver=index_r; receiver < num_receivers; receiver+= inc_r) {
for(int emitter=index_e; emitter < num_emitters; emitter+= inc_e) {
ray = emitter*num_receivers + receiver;
// trace path using Bresenham algorithm...
x_pixel = x_emitters[emitter];
y_pixel = y_emitters[emitter];
z_pixel = z_emitters[emitter];
mult_element(transA, ray, x_pixel, y_pixel, z_pixel, rv_x, rv_y, scale_factor, x, y);
d1 = x_receivers[receiver] - x_pixel;
d2 = y_receivers[receiver] - y_pixel;
d3 = z_receivers[receiver] - z_pixel;
m1 = abs(d1);
m2 = abs(d2);
m3 = abs(d3);
if (m1 >= m2 && m1 >= m3) {
pixel1 = &x_pixel;
pixel2 = &y_pixel;
pixel3 = &z_pixel;
} else if(m2 >= m1 && m2 >= m3) {
int tmp = d1;
d1 = d2;
d2 = tmp;
pixel1 = &y_pixel;
pixel2 = &x_pixel;
pixel3 = &z_pixel;
} else {
int tmp = d1;
d1 = d3;
d3 = d2;
d2 = tmp;
pixel1 = &z_pixel;
pixel2 = &x_pixel;
pixel3 = &y_pixel;
}
inc1 = (d1 < 0) ? -1 : 1;
inc2 = (d2 < 0) ? -1 : 1;
inc3 = (d3 < 0) ? -1 : 1;
m1 = abs(d1);
m2 = abs(d2);
m3 = abs(d3);
err_1 = 2 * m2 - m1;
err_2 = 2 * m3 - m1;
for(int j = 1; j < m1+1; j++) {
if (err_1 > 0) {
*pixel2 += inc2;
err_1 -= 2 * m1;
}
if (err_2 > 0) {
*pixel3 += inc3;
err_2 -= 2 * m1;
}
err_1 += 2 * m2;
err_2 += 2 * m3;
*pixel1 += inc1;
mult_element(transA, ray, x_pixel, y_pixel, z_pixel, rv_x, rv_y, scale_factor, x, y);
}
}
}
}
// matrix-vector multiplication with dynamic calculation of the measurement matrix...
inline cublasStatus_t mat_vec_mul(cublasOperation_t trans, const geometry_device &A, const float *x, float *y,
cudaStream_t stream=0)
{
int len_y = (trans == CUBLAS_OP_N) ? A.num_emitters * A.num_receivers : A.rv_x * A.rv_y * A.rv_z;
cudaMemset(y, 0, len_y * sizeof(float));
dim3 threads, blocks;
// recht Willkürliche Dimensionierung (Performance ca. 10 % schlechter, als mit jeweils bester gefundener Dimensionierung
threads.x = 64;
threads.y = 4;
if(trans == CUBLAS_OP_N) {
blocks.x = max(A.num_receivers / threads.x, 1);
blocks.y = max(A.num_emitters / threads.x, 1);
} else {
blocks.y = max(A.num_receivers / threads.x, 1);
blocks.x = max(A.num_emitters / threads.x, 1);
}
// beste gefundene Dimensionierung für USCT2-Geometrie, Volumen: 64x64x64:
/* if(trans == CUBLAS_OP_N) {
threads.x = 32;
threads.y = 8;
blocks.x = 40;
blocks.y = 78;
} else {
threads.x = 128;
threads.y = 2;
blocks.x = 1;
blocks.y =16;
}*/
// beste gefundene Dimensionierung für USCT2-Geometrie, Volumen: 128x128x128:
/* if(trans == CUBLAS_OP_N) {
threads.x = 64;
threads.y = 4;
blocks.x = 22;
blocks.y = 152;
} else {
threads.x = 64;
threads.y = 8;
blocks.x = 8;
blocks.y = 26;
}*/
dyn_calc_kernel<<<blocks, threads, 0, stream>>>(trans, A.num_emitters, A.num_receivers, A.rv_x, A.rv_y, A.rv_z,
A.scale_factor, A.x_re_dev_ptr(), A.y_re_dev_ptr(), A.z_re_dev_ptr(), A.x_em_dev_ptr(), A.y_em_dev_ptr(),
A.z_em_dev_ptr(), x, y);
return CUBLAS_STATUS_SUCCESS;
}
#endif /* MAT_VEC_MUL_H_ */