Files
UR/test/Reconstruction_Test.cpp

341 lines
12 KiB
C++

#include <cstddef>
#include <gtest/gtest.h>
#include <limits>
#include "Function1D.h"
#include "MatlabReader.h"
#include "MatlabWriter.h"
#include "Matrix.h"
#include "Sparse.h"
#include "common/getMeasurementMetaData.h"
#include "config/config.h"
#include "reflectionReconstruction/preprocessData/preprocessAScanBlockForReflection.h"
#include "transmissionReconstruction/reconstruction/buildMatrix/DGradient.h"
#include "transmissionReconstruction/reconstruction/buildMatrix/FMM.h"
#include "transmissionReconstruction/reconstruction/buildMatrix/buildMatrix.h"
#include "transmissionReconstruction/reconstruction/reconstruction.h"
#include "transmissionReconstruction/reconstruction/solvingEquationSystem/TVAL/TVAL.h"
#include "reflectionReconstruction/preprocessData/determineOptimalPulse.h"
inline double fourDecimalRound(double src){
return round(src*10000.0)/10000.0;
}
#define EXPECT_DOUBLE_AE(valueA,valueB)\
EXPECT_DOUBLE_EQ(fourDecimalRound(valueA),fourDecimalRound(valueB))
#define ASSERT_DOUBLE_AE(valueA,valueB)\
ASSERT_DOUBLE_EQ(fourDecimalRound(valueA),fourDecimalRound(valueB))
class Reconstruction_Test : public ::testing::Test {
protected:
static void SetUpReconstructionTester() {
}
static void TearDownTestCase() {
}
void SetUp() {
}
void TearDown() {
}
};
TEST_F(Reconstruction_Test, determineOptimalPulse) {
Recon::reflectParams::imageResolution = 8.925316499483377e-04;
Recon::reflectParams::optPulseFactor = 48;
auto result = Recon::determineOptimalPulse(1.0000e-07,4096);
EXPECT_EQ(4096, result.getDataSize());
MatlabReader m2("/home/krad/TestData/sincPeakft.mat");
auto f1 = m2.read("sincPeak_ft");
for(size_t i=0; i<f1.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(f1[i], 0)<<"index:"<<i;
}
}
TEST_F(Reconstruction_Test, preprocessAScanBlockForReflection) {
Recon::initalizeConfig();
MatlabReader m2("/home/krad/TestData/preprocessRefC.mat");
auto blockedAScans = m2.read("blockedAScans");
auto blockedMP = m2.read("blockedMP");
auto blockedSL = m2.read("blockedSL");
auto blockedSN = m2.read("blockedSN");
auto blockedRL = m2.read("blockedRL");
auto blockedRN = m2.read("blockedRN");
auto senderPositionBlock = m2.read("blockedSenderPosition");
auto receiverPositionBlock = m2.read("blockedReceiverPosition");
auto channelBlock = m2.read("blockedChannels");
auto gainBlock = m2.read("blockedGain");
Recon::MeasurementInfo info;
info.expectedAScanLength= 4096;
info.Wavelength=3;
Recon::PreComputes preComputes;
preComputes.measuredCEUsed = true;
preComputes.offset = 5.2000e-07;
preComputes.timeInterval = 1.0000e-07;
preComputes.matchedFilter = m2.read("matchedFilter");
MatlabReader m("/home/krad/TestData/sincPeakft.mat");
preComputes.sincPeak_ft = m.read("sincPeak_ft");
auto result = Recon::preprocessAScanBlockForReflection(blockedAScans, blockedMP, blockedSL, blockedSN, blockedRL,
blockedRN,senderPositionBlock, receiverPositionBlock, gainBlock, channelBlock, info, preComputes);
size_t size = result.AscanBlock.getDataSize();
// for(size_t i=0; i<result.AscanBlock.getDataSize(); ++i)
// {
// ASSERT_DOUBLE_AE(f1[i], result[i])<<"index:"<<i;
// }
}
TEST_F(Reconstruction_Test, reconstructArt) {
MatlabReader m("/home/sun/testData/reconstructArt.mat");
auto data = m.read("data");
auto dataAtt = m.read("dataAtt");
auto dims = m.read("dims");
auto receiverList = m.read("receiverList");
auto res = m.read("res");
auto senderList = m.read("senderList");
auto SOS_IN_WATER = m.read("SOS_IN_WATER");
MatlabReader m2("/home/krad/TestData/gpuresult.mat");
auto f1 = m2.read("out");
auto result = Recon::reconstructArt(data, dataAtt, dims, senderList, receiverList, res, SOS_IN_WATER[0]);
for(size_t i=0; i<f1.getDataSize(); ++i)
{
ASSERT_DOUBLE_AE(f1[i], result.outSOS[i])<<"index:"<<i;
}
}
TEST_F(Reconstruction_Test, checkAndScale) {
MatlabReader m("/home/sun/testData/buildMatrix.mat");
auto i = m.read("i1");
auto j = m.read("j1");
auto s = m.read("s1");
MatlabReader m2("/home/sun/testData/checkAndScale.mat");
auto b = m2.read("b");
Aurora::Sparse sparse(i,j,s,709613,1196032);
Recon::checkAndScale(sparse,b,1196032);
}
TEST_F(Reconstruction_Test, buildMatrix) {
MatlabReader m("/home/sun/testData/buildMatrix.mat");
auto j1 = m.read("j1");
auto i1 = m.read("i1");
auto s1 = m.read("s1");
auto dims = m.read("dims");
auto receiverList = m.read("receiverList");
auto potentialMap = m.read("potentialMap");
auto senderList = m.read("senderList");
auto res = m.read("res");
auto result = Recon::buildMatrix(senderList, receiverList, res, dims, false, potentialMap);
for(size_t i=0; i<i1.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(i1[i] - 1, result.M.getColVector()[i]);
}
for(size_t i=0; i<j1.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(j1[i]- 1, result.M.getRowVector()[i]);
}
for(size_t i=0; i<s1.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(s1[i], result.M.getValVector()[i]);
}
}
TEST_F(Reconstruction_Test, calculateMinimalMaximalTransducerPositions) {
auto senderList = Aurora::Matrix::fromRawData(new double[6]{1, 2, 3, 1, 2, 4}, 3, 2);
auto receiverList = Aurora::Matrix::fromRawData(new double[6]{1, 8, 3, 1, 2, 1}, 3, 2);
auto result = Recon::calculateMinimalMaximalTransducerPositions(senderList,receiverList);
EXPECT_DOUBLE_EQ(1.0,result.getData()[0]);
EXPECT_DOUBLE_EQ(2,result.getData()[1]);
EXPECT_DOUBLE_EQ(1.0,result.getData()[2]);
EXPECT_DOUBLE_EQ(1.0,result.getData()[3]);
EXPECT_DOUBLE_EQ(8,result.getData()[4]);
EXPECT_DOUBLE_EQ(4,result.getData()[5]);
}
TEST_F(Reconstruction_Test, calculateResolution) {
auto ddims = Aurora::Matrix::fromRawData(new double[6]{-0.1296,-0.1296,0.0185,0.1296,0.1295,0.1682}, 1, 6);
auto dims = Aurora::Matrix::fromRawData(new double[3]{128,128,74}, 1, 3);
auto result = Recon::calculateResolution(ddims, dims);
EXPECT_DOUBLE_AE(0.0020,result[0]);
EXPECT_DOUBLE_AE(0.0020,result[1]);
EXPECT_DOUBLE_AE(0.0021,result[2]);
}
TEST_F(Reconstruction_Test, getDimensions) {
auto ddims = Aurora::Matrix::fromRawData(new double[6]{-0.1296,-0.1296,0.0185,0.1296,0.1295,0.1682}, 1, 6);
double numPixelXY = 128;
auto result = Recon::getDimensions(numPixelXY,ddims);
EXPECT_DOUBLE_AE(128,result[0]);
EXPECT_DOUBLE_AE(128,result[1]);
EXPECT_DOUBLE_AE(74,result[2]);
}
TEST_F(Reconstruction_Test, discretizePositions) {
MatlabReader m("/home/sun/testData/discretizePositions.mat");
auto senderList = m.read("senderList");
auto receiverList = m.read("receiverList");
auto senderListResult = m.read("senderListResult");
auto receiverListResult = m.read("receiverListResult");
auto dims = m.read("dims");
auto ddims = m.read("ddims");
auto res = m.read("res");
auto result = Recon::discretizePositions(senderList,receiverList,Recon::transParams::numPixelXY);
EXPECT_DOUBLE_AE(senderListResult.getDataSize(), result.senderCoordList.getDataSize());
for(size_t i=0; i<senderListResult.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(senderListResult[i], result.senderCoordList[i]);
}
EXPECT_DOUBLE_AE(receiverListResult.getDataSize(), result.receiverCoordList.getDataSize());
for(size_t i=0; i<receiverListResult.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(receiverListResult[i], result.receiverCoordList[i]);
}
EXPECT_DOUBLE_AE(dims.getDataSize(), result.dims.getDataSize());
for(size_t i=0; i<dims.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(dims[i], result.dims[i]);
}
EXPECT_DOUBLE_AE(ddims.getDataSize(), result.ddims.getDataSize());
for(size_t i=0; i<ddims.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(ddims[i], result.ddims[i]);
}
EXPECT_DOUBLE_AE(res.getDataSize(), result.res.getDataSize());
for(size_t i=0; i<res.getDataSize(); ++i)
{
EXPECT_DOUBLE_AE(res[i], result.res[i]);
}
}
TEST_F(Reconstruction_Test, DGradient) {
MatlabReader m("/home/krad/TestData/DGradient.mat");
auto x = m.read("x");
auto y = m.read("y");
// x.forceReshape(x.getDataSize(), 1, 1);
auto result = Recon::DGradient(x,1,2);
for (size_t i = 0; i < result.getDataSize(); i++)
{
EXPECT_DOUBLE_AE(result.getData()[i],y.getData()[i])<<"index:"<<i;
}
}
TEST_F(Reconstruction_Test, correctPath) {
auto path = Aurora::Matrix::fromRawData(new double[6]{1,1,10,9,1,1},2,3);
auto startPt = Aurora::Matrix::fromRawData(new double[3]{1, .5, 1}, 1, 3);
auto endPt = Aurora::Matrix::fromRawData(new double[3]{1, 10, 1}, 1, 3);
Recon::correctPath(path,startPt,endPt);
for (size_t i = 0; i < 10; i++)
{
EXPECT_DOUBLE_EQ(path[i],1.0);
EXPECT_DOUBLE_EQ(path[i+10],1.0+i);
EXPECT_DOUBLE_EQ(path[i+20],1.0);
}
}
TEST_F(Reconstruction_Test,getPixelLengthApproximation){
auto startPt = Aurora::Matrix::fromRawData(new double[3]{1, 1, 1}, 1, 3);
auto endPt = Aurora::Matrix::fromRawData(new double[3]{4, 5, 6}, 1, 3);
auto res = Aurora::Matrix::fromRawData(new double[3]{.1, .1, .1}, 1, 3);
auto weight = Recon::getPixelLengthApproximation(startPt, endPt, res, 10);
EXPECT_DOUBLE_AE(weight[0],.0707);
}
TEST_F(Reconstruction_Test,traceLine3D){
auto p1 = Aurora::Matrix::fromRawData(new double[3]{1, 10, 12}, 1, 3);
auto p2 = Aurora::Matrix::fromRawData(new double[3]{20, 2, 13}, 1, 3);
auto discretization = Aurora::Matrix::fromRawData(new double[3]{1, 1, 1}, 1, 3);
auto result = Recon::traceLine3D(p1, p2, discretization);
MatlabReader m("/home/krad/TestData/traceLine3D.mat");
auto path = m.read("path");
auto ds = m.read("ds");
for (size_t i = 0; i < result.path.getDataSize(); i++)
{
EXPECT_DOUBLE_AE(result.path.getData()[i],path[i])<<"index:"<<i;
}
for (size_t i = 0; i < result.ds.getDataSize(); i++)
{
EXPECT_DOUBLE_AE(result.ds.getData()[i],ds[i])<<"index:"<<i;
}
}
TEST_F(Reconstruction_Test,traceStraightRay){
auto p1 = Aurora::Matrix::fromRawData(new double[3]{1, 1, 1}, 1, 3);
auto p2 = Aurora::Matrix::fromRawData(new double[3]{5, 6, 7}, 1, 3);
auto res = Aurora::Matrix::fromRawData(new double[3]{.1, .1, .1}, 1, 3);
auto dmis = Aurora::Matrix::fromRawData(new double[3]{5, 10, 20}, 1, 3);
auto result = Recon::traceStraightRay(p1, p2, res, dmis);
EXPECT_EQ(13, result.weighting.getDataSize());
EXPECT_DOUBLE_AE(result.weighting[0],0);
EXPECT_DOUBLE_AE(result.weighting[1],0.1462);
EXPECT_DOUBLE_AE(result.weighting[11],0.0292);
EXPECT_DOUBLE_AE(result.weighting[3],0.0439);
EXPECT_EQ(13, result.path.getDimSize(0));
EXPECT_EQ(3, result.path.getDimSize(1));
EXPECT_DOUBLE_AE(result.path[0],1);
EXPECT_DOUBLE_AE(result.path[15],2);
EXPECT_DOUBLE_AE(result.path[30],3);
EXPECT_EQ(13, result.pathLen);
}
TEST_F(Reconstruction_Test,traceStraightRayBresenham){
auto p1 = Aurora::Matrix::fromRawData(new double[3]{1, 1, 1}, 1, 3);
auto p2 = Aurora::Matrix::fromRawData(new double[3]{5, 6, 7}, 1, 3);
auto res = Aurora::Matrix::fromRawData(new double[3]{.1, .1, .1}, 1, 3);
auto result = Recon::traceStraightRayBresenham(p1, p2, res);
EXPECT_EQ(1, result.weighting.getDataSize());
EXPECT_DOUBLE_AE(result.weighting[0],0.1462);
EXPECT_EQ(6, result.path.getDimSize(0));
EXPECT_EQ(3, result.path.getDimSize(1));
EXPECT_DOUBLE_AE(result.path[0],1);
EXPECT_DOUBLE_AE(result.path[15],4);
EXPECT_DOUBLE_AE(result.path[7],2);
EXPECT_EQ(6, result.pathLen);
}
TEST_F(Reconstruction_Test,callTval3){
TVALOptions opt;
opt.nonneg = false;
opt.bent = false;
opt.tol = 1E-10;
opt.maxit = 50;
opt.TVnorm = 2;
opt.disp = false;
opt.mu0 = 100;
opt.mu = 100;
opt.beta = 1;
opt.beta0 = 1;
MatlabReader m("/home/sun/testData/buildMatrixTest.mat");
auto j1 = m.read("j1");
auto i1 = m.read("i1");
auto s1 = m.read("s1");
Aurora::Sparse M(i1-1,j1-1,s1,734989,1196032);
MatlabReader m2("/home/sun/testData/tval3gpu3d.mat");
auto b = m2.read("b");
auto dims = Aurora::Matrix::fromRawData(new double[3]{128,128,73}, 1, 3);
auto result = Recon::callTval3(M, b, dims, 0,opt);
auto outSOS = Recon::slownessToSOS(result, 1.498206569328594e+03) ;
MatlabWriter w2("/home/krad/transmissionSOS111.mat");
w2.write(outSOS, "SOS");
}