392 lines
18 KiB
C++
392 lines
18 KiB
C++
#include "detection.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <sys/types.h>
|
|
|
|
#include "Function.h"
|
|
#include "Function1D.h"
|
|
#include "Function2D.h"
|
|
#include "Function3D.h"
|
|
#include "Matrix.h"
|
|
|
|
#include "common/getMeasurementMetaData.h"
|
|
#include "config/config.h"
|
|
#include "calculateBankDetectAndHilbertTransformation.hpp"
|
|
|
|
using namespace Aurora;
|
|
namespace Recon {
|
|
Matrix analyzeDetections(const Matrix &slBlockTotal, const Matrix &snBlockTotal, const Matrix &rlBlockTotal, const Matrix &rnBlockTotal, const Matrix &tofDataTotal){
|
|
//TODO: 待完成,暂时用不到
|
|
return Matrix();
|
|
}
|
|
|
|
|
|
Matrix calculateSOSOffset(const Matrix &sosBlock, double referenceSOS, const Matrix &distBlock, double sampleRate){
|
|
auto offset = (distBlock / sosBlock - distBlock / referenceSOS) * sampleRate;
|
|
return offset;
|
|
}
|
|
|
|
|
|
Matrix calculateAttenuation(const Matrix &ascans, const Matrix &startPos, const Matrix &endPos, const Matrix &ascansRef, const Matrix &startPosRef, const Matrix &endPosRef)
|
|
{
|
|
auto ascans2 = zeros(ascans.getDimSize(0), ascans.getDimSize(1));
|
|
auto ascansRef2 = zeros(ascansRef.getDimSize(0), ascansRef.getDimSize(1));
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < ascans.getDimSize(1); i++)
|
|
{
|
|
for (size_t j = startPos[i]-1; j < endPos[i]; j++)
|
|
{
|
|
ascans2(j, i) = ascans(j, i);
|
|
}
|
|
for (size_t j = startPosRef[i]-1; j < endPosRef[i]; j++)
|
|
{
|
|
ascansRef2(j, i) = ascansRef(j, i);
|
|
}
|
|
}
|
|
|
|
auto pulseEnergy = sum(ascans2^2);
|
|
auto pulseEnergyEmpty = sum(ascansRef2^2);
|
|
|
|
return log(pulseEnergyEmpty/pulseEnergy);
|
|
}
|
|
|
|
SearchPosition calculateStarEndSearchPosition(const Matrix &aVDistBlock,
|
|
double minSpeedOfSound, double maxSpeedOfSound,
|
|
double sampleRate, double maxSample,
|
|
const Matrix &aVSosOffsetBlock,
|
|
double startOffset, double segmentLenOffset)
|
|
{
|
|
auto startSearch = floor((aVDistBlock / maxSpeedOfSound)*sampleRate+aVSosOffsetBlock+startOffset);
|
|
for (size_t i = 0; i < startSearch.getDataSize(); i++)
|
|
{
|
|
startSearch[i] = (uint)(startSearch[i]);
|
|
if(startSearch[i]<1) startSearch[i]=1;
|
|
else if(startSearch[i]>maxSample) startSearch[i] = maxSample;
|
|
}
|
|
|
|
auto endSearch = ceil(aVDistBlock/minSpeedOfSound*sampleRate+aVSosOffsetBlock+startOffset+segmentLenOffset);
|
|
for (size_t i = 0; i < endSearch.getDataSize(); i++)
|
|
{
|
|
endSearch[i] = (uint)(endSearch[i]);
|
|
if(endSearch[i]<1) endSearch[i]=1;
|
|
else if(endSearch[i]>maxSample) endSearch[i] = maxSample;
|
|
}
|
|
SearchPosition result;
|
|
result.startSearch = startSearch;
|
|
result.endSearch = endSearch;
|
|
return result;
|
|
}
|
|
|
|
TimeWindowResult applyTimeWindowing(const Aurora::Matrix &AscanBlock, double sampleRate,
|
|
const Aurora::Matrix &distBlock, const Aurora::Matrix &sosBlock,
|
|
double expectedSOSWater, double startOffset, double segmentLenOffset,
|
|
double minSpeedOfSound, double maxSpeedOfSound, bool gaussWindow)
|
|
{
|
|
auto sosOffset = calculateSOSOffset(sosBlock, expectedSOSWater, distBlock, sampleRate);
|
|
|
|
auto calcResult = calculateStarEndSearchPosition(distBlock, minSpeedOfSound, maxSpeedOfSound, sampleRate,AscanBlock.getDimSize(0), sosOffset, startOffset, segmentLenOffset);
|
|
|
|
auto AscanBlockProcessed = zeros(AscanBlock.getDimSize(0),AscanBlock.getDimSize(1));
|
|
|
|
if(gaussWindow)
|
|
{
|
|
auto expectedPosWater = (distBlock / expectedSOSWater) * sampleRate + startOffset;
|
|
auto windowWidth = calcResult.endSearch-calcResult.startSearch;
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < AscanBlock.getDimSize(1); i++)
|
|
{
|
|
auto t = linspace(-5,5,windowWidth[i]);
|
|
auto gauss = exp( -0.1 * (transpose(t) ^ 2));
|
|
|
|
for (size_t j = calcResult.startSearch[i]-1; j < calcResult.endSearch[i]; j++)
|
|
{
|
|
AscanBlockProcessed(j, i) = AscanBlock(j, i);
|
|
}
|
|
auto temp = zeros(AscanBlockProcessed.getDimSize(0), 1);
|
|
size_t end = std::round(expectedPosWater[i])-std::round(windowWidth[i]/2)+gauss.getDataSize()-1;
|
|
size_t gIdx = 0;
|
|
for (size_t k = std::round(expectedPosWater[i])- std::round(windowWidth[i]/2)-1; k < end; k++)
|
|
{
|
|
temp[k] = gauss[gIdx++];
|
|
}
|
|
AscanBlockProcessed($,i) = AscanBlockProcessed($,i).toMatrix() * temp;
|
|
}
|
|
}
|
|
else{
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < AscanBlock.getDimSize(1); i++) {
|
|
for (size_t j = calcResult.startSearch[i] - 1;
|
|
j < calcResult.endSearch[i]; j++) {
|
|
AscanBlockProcessed(j, i) = AscanBlock(j, i);
|
|
}
|
|
}
|
|
}
|
|
TimeWindowResult result;
|
|
result.startSearch = calcResult.startSearch;
|
|
result.AscanBlockProcessed = AscanBlockProcessed;
|
|
return result;
|
|
}
|
|
|
|
Aurora::Matrix detectAttVectorized(const Aurora::Matrix &Ascan, const Aurora::Matrix &AscanRef,
|
|
const Aurora::Matrix &distRef,
|
|
const Aurora::Matrix &sosWaterRef,
|
|
const Aurora::Matrix &tof, int aScanReconstructionFrequency,
|
|
double offsetElectronic, int detectionWindowATT)
|
|
{
|
|
auto sizeAscan = size(Ascan);
|
|
|
|
auto sampleRate = aScanReconstructionFrequency;
|
|
double offsetElectronicSamples = offsetElectronic * sampleRate;
|
|
|
|
auto envelopeOfAScan = abs(hilbert(Ascan));
|
|
auto envelopeOfReferenceAScan = abs(hilbert(AscanRef));
|
|
auto tof2 = (distRef / sosWaterRef) * sampleRate + offsetElectronicSamples;
|
|
|
|
auto startPos = zeros(Ascan.getDimSize(1), 1);
|
|
auto endPos = zeros(Ascan.getDimSize(1), 1);
|
|
auto startPosRef = zeros(Ascan.getDimSize(1), 1);
|
|
auto endPosRef = zeros(Ascan.getDimSize(1), 1);
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < Ascan.getDimSize(1); i++)
|
|
{
|
|
startPos[i] = std::floor(std::max(tof[i]*sampleRate+offsetElectronicSamples,1.0));
|
|
endPos[i] = std::ceil(std::min(sizeAscan[1], tof[i]*sampleRate+offsetElectronicSamples+detectionWindowATT));
|
|
startPosRef[i] = std::floor(std::max( tof2[i],1.0));
|
|
endPosRef[i] = std::ceil(std::min(sizeAscan[1], tof2[i]+detectionWindowATT));
|
|
}
|
|
return calculateAttenuation(envelopeOfAScan,startPos,endPos,envelopeOfReferenceAScan,startPosRef,endPosRef);
|
|
}
|
|
|
|
int nextpow2(unsigned int value){
|
|
unsigned int compareValue = 2;
|
|
int result = 1;
|
|
while(compareValue<=value){
|
|
compareValue=compareValue<<1;
|
|
result++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
DetectResult detectTofVectorized(
|
|
const Aurora::Matrix &AscanBlock, const Aurora::Matrix &AscanRefBlock,
|
|
const Aurora::Matrix &distBlock, const Aurora::Matrix &distBlockRef,
|
|
const Aurora::Matrix &sosWaterBlock,
|
|
const Aurora::Matrix &sosWaterRefBlock, double expectedSOSWater,
|
|
int useTimeWindowing, int aScanReconstructionFrequency,
|
|
double offsetElectronic, int detectionWindowSOS, double minSpeedOfSound,
|
|
double maxSpeedOfSound, bool gaussWindow)
|
|
{
|
|
auto sampleRate = aScanReconstructionFrequency;
|
|
double offsetElectronicSamples = offsetElectronic * sampleRate;
|
|
Matrix diffStartSearch;
|
|
TimeWindowResult timeResult1;
|
|
timeResult1.AscanBlockProcessed = AscanBlock;
|
|
TimeWindowResult timeResult2;
|
|
timeResult2.AscanBlockProcessed = AscanRefBlock;
|
|
if (useTimeWindowing == 1) {
|
|
timeResult1 = applyTimeWindowing(
|
|
AscanBlock, sampleRate, distBlock, sosWaterBlock,
|
|
expectedSOSWater, offsetElectronicSamples, detectionWindowSOS,
|
|
minSpeedOfSound, maxSpeedOfSound, gaussWindow);
|
|
timeResult2 = applyTimeWindowing(
|
|
AscanRefBlock, sampleRate, distBlockRef, sosWaterRefBlock,
|
|
expectedSOSWater, offsetElectronicSamples, detectionWindowSOS,
|
|
minSpeedOfSound, maxSpeedOfSound, gaussWindow);
|
|
|
|
diffStartSearch = timeResult1.startSearch - timeResult1.startSearch;
|
|
}
|
|
auto _AscanBlock = timeResult1.AscanBlockProcessed;
|
|
auto _AscanRefBlock = timeResult2.AscanBlockProcessed;
|
|
|
|
auto m = std::max(size(_AscanBlock, 1), size(_AscanRefBlock, 1));
|
|
auto maxlag =
|
|
std::max(size(_AscanBlock, 1), size(_AscanRefBlock, 1)) - 1;
|
|
auto mxl = std::min(maxlag, m - 1);
|
|
auto ceilLog2 = nextpow2(2 * m - 1);
|
|
auto m2 = pow(2, ceilLog2);
|
|
|
|
auto x = fft(_AscanBlock, m2);
|
|
auto y = fft(_AscanRefBlock, m2);
|
|
auto c_1_1 = x * conj(y);
|
|
auto c_1_2 = ifft(c_1_1);
|
|
|
|
auto c1 = real(c_1_2);
|
|
auto c = zeros(mxl + mxl + 1, c1.getDimSize(1));
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < mxl; i++) {
|
|
c(i, $) = c1(m2 - mxl + i, $);
|
|
c(i + mxl, $) = c1(i, $);
|
|
}
|
|
c(mxl + mxl, $) = c1(mxl, $);
|
|
|
|
auto shiftInSamples = zeros(1, c1.getDimSize(1));
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < c1.getDimSize(1); i++) {
|
|
long rowID = 0, colID = 0;
|
|
max(c($, i).toMatrix(), All, rowID, colID);
|
|
shiftInSamples[i] = -maxlag + colID + rowID;
|
|
}
|
|
if (useTimeWindowing) {
|
|
shiftInSamples = shiftInSamples - diffStartSearch;
|
|
}
|
|
auto tof = shiftInSamples / sampleRate + distBlock / sosWaterBlock;
|
|
auto sosValue = distBlock / tof;
|
|
DetectResult result;
|
|
result.tof = tof;
|
|
result.sosValue = sosValue;
|
|
return result;
|
|
}
|
|
|
|
DetectResult detectTofAndAtt(
|
|
const Aurora::Matrix &AscanBlock, const Aurora::Matrix &AscanRefBlock,
|
|
const Aurora::Matrix &distBlock, const Aurora::Matrix &distRefBlock,
|
|
const Aurora::Matrix &sosWaterBlock,
|
|
const Aurora::Matrix &sosWaterRefBlock,
|
|
int resampleFactor,int nthreads, double expectedSOSWater,
|
|
int useTimeWindowing, int aScanReconstructionFrequency,int detectionWindowATT,
|
|
double offsetElectronic, int detectionWindowSOS, double minSpeedOfSound,
|
|
double maxSpeedOfSound, bool gaussWindow)
|
|
{
|
|
auto result = detectTofVectorized(
|
|
AscanBlock, AscanRefBlock, distBlock, distRefBlock, sosWaterBlock,
|
|
sosWaterRefBlock, expectedSOSWater, useTimeWindowing,
|
|
aScanReconstructionFrequency, offsetElectronic, detectionWindowSOS,
|
|
minSpeedOfSound, maxSpeedOfSound, gaussWindow);
|
|
auto tofRel = result.tof - distBlock / sosWaterBlock;
|
|
result.att = detectAttVectorized(
|
|
AscanBlock, AscanRefBlock, distRefBlock, sosWaterRefBlock,
|
|
result.tof, aScanReconstructionFrequency, offsetElectronic,
|
|
detectionWindowATT);
|
|
result.tof = tofRel;
|
|
return result;
|
|
}
|
|
|
|
DetectResult detectTofAndAttMex(
|
|
const Aurora::Matrix &AscanBlock, const Aurora::Matrix &AscanRefBlock,
|
|
const Aurora::Matrix &distBlock, const Aurora::Matrix &distRefBlock,
|
|
const Aurora::Matrix &sosWaterBlock,
|
|
const Aurora::Matrix &sosWaterRefBlock,
|
|
int resampleFactor,int nthreads, double expectedSOSWater,
|
|
int useTimeWindowing, int aScanReconstructionFrequency,int detectionWindowATT,
|
|
double offsetElectronic, int detectionWindowSOS, double minSpeedOfSound,
|
|
double maxSpeedOfSound, bool gaussWindow)
|
|
{
|
|
|
|
auto sizeAscan = size(AscanBlock);
|
|
|
|
auto sampleRate = aScanReconstructionFrequency;
|
|
double offsetElectronicSamples = offsetElectronic * sampleRate;
|
|
Matrix diffStartSearch;
|
|
TimeWindowResult timeResult1;
|
|
timeResult1.AscanBlockProcessed = AscanBlock;
|
|
TimeWindowResult timeResult2;
|
|
timeResult2.AscanBlockProcessed = AscanRefBlock;
|
|
if (useTimeWindowing == 1) {
|
|
timeResult1 = applyTimeWindowing(
|
|
AscanBlock, sampleRate, distBlock, sosWaterBlock,
|
|
expectedSOSWater, offsetElectronicSamples, detectionWindowSOS,
|
|
minSpeedOfSound, maxSpeedOfSound, gaussWindow);
|
|
timeResult2 = applyTimeWindowing(
|
|
AscanRefBlock, sampleRate, distRefBlock, sosWaterRefBlock,
|
|
expectedSOSWater, offsetElectronicSamples, detectionWindowSOS,
|
|
minSpeedOfSound, maxSpeedOfSound, gaussWindow);
|
|
|
|
diffStartSearch = timeResult1.startSearch - timeResult2.startSearch;
|
|
}
|
|
auto _AscanBlock = timeResult1.AscanBlockProcessed;
|
|
auto _AscanRefBlock = timeResult2.AscanBlockProcessed;
|
|
|
|
int M =std::min(AscanBlock.getDimSize(0),AscanRefBlock.getDimSize(0));
|
|
|
|
Matrix resDetect;
|
|
double * resEnvelopeD = nullptr;
|
|
double * resEnvelopeRefD = nullptr;
|
|
|
|
size_t N = _AscanBlock.getDimSize(1);
|
|
size_t totalSize = N*M;
|
|
Matrix _AscanBlock_trim = _AscanBlock.getDimSize(0)!=M?_AscanBlock.block(0, 0, M-1):_AscanBlock;
|
|
Matrix _AscanRefBlock_trim = _AscanRefBlock.getDimSize(0)!=M?_AscanRefBlock.block(0, 0, M-1):_AscanRefBlock;
|
|
resDetect = Aurora::zeros(1,N);
|
|
resEnvelopeD = Aurora::malloc(totalSize);
|
|
resEnvelopeRefD = Aurora::malloc(totalSize);
|
|
calculateBankDetectAndHilbertTransformation(
|
|
_AscanBlock_trim.getData(), _AscanRefBlock_trim.getData(), N, M, resampleFactor, nthreads,
|
|
resDetect.getData(), resEnvelopeD, resEnvelopeRefD);
|
|
auto resEnvelope =Matrix::New(resEnvelopeD,M,N);
|
|
auto resEnvelopeRef =Matrix::New(resEnvelopeRefD,M,N);
|
|
//floor(size(AscanBlock, 1)*inits.resampleFactor / 2 - 1),
|
|
int end_1 = std::floor(_AscanBlock.getDimSize(0)*resampleFactor/2-1);
|
|
//-ceil(size(AscanBlock, 1)*inits.resampleFactor / 2)
|
|
int begin_2 = -std::ceil(_AscanBlock.getDimSize(0)*resampleFactor/2);
|
|
int *lags2 = new int[_AscanBlock.getDimSize(0)];
|
|
for (size_t i = 0; i <= end_1; i++)
|
|
{
|
|
lags2[i] = i;
|
|
lags2[i+end_1+1] = begin_2+i;
|
|
}
|
|
auto resDetectLags = zeros(1,_AscanBlock.getDimSize(1));
|
|
for (size_t i = 0; i < _AscanBlock.getDimSize(1); i++)
|
|
{
|
|
resDetectLags[i] = lags2[(int)resDetect[i]];
|
|
}
|
|
delete [] lags2;
|
|
resDetectLags =resDetectLags/resampleFactor;
|
|
if (useTimeWindowing == 1) {
|
|
resDetectLags = resDetectLags - diffStartSearch;
|
|
}
|
|
auto tofRel = (resDetectLags / sampleRate);
|
|
auto tofAbs = tofRel + (distBlock / sosWaterBlock);
|
|
auto sosValue = distBlock / tofAbs;
|
|
auto tof2 = (distRefBlock / sosWaterRefBlock) * sampleRate + offsetElectronicSamples;
|
|
auto startPos = zeros(_AscanBlock.getDimSize(1), 1);
|
|
auto endPos = zeros(_AscanBlock.getDimSize(1), 1);
|
|
auto startPosRef = zeros(_AscanBlock.getDimSize(1), 1);
|
|
auto endPosRef = zeros(_AscanBlock.getDimSize(1), 1);
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < _AscanBlock.getDimSize(1); i++)
|
|
{
|
|
startPos[i] = std::floor(std::max(tofAbs[i]*sampleRate+offsetElectronicSamples,1.0));
|
|
endPos[i] = std::ceil(std::min(sizeAscan[0], tofAbs[i]*sampleRate+offsetElectronicSamples+detectionWindowATT));
|
|
startPosRef[i] = std::floor(std::max( tof2[i],1.0));
|
|
endPosRef[i] = std::ceil(std::min(sizeAscan[0], tof2[i]+detectionWindowATT));
|
|
}
|
|
DetectResult result;
|
|
result.att = calculateAttenuation(resEnvelope,startPos,endPos,resEnvelopeRef,startPosRef,endPosRef);
|
|
result.tof = tofRel;
|
|
result.sosValue = sosValue;
|
|
return result;
|
|
}
|
|
|
|
DetectResult transmissionDetection(const Aurora::Matrix &AscanBlock,
|
|
const Aurora::Matrix &AscanRefBlock,
|
|
const Aurora::Matrix &distBlock,
|
|
const Aurora::Matrix &distRefBlock,
|
|
const Aurora::Matrix &sosWaterBlock,
|
|
const Aurora::Matrix &sosWaterRefBlock,
|
|
double expectedSOSWater) {
|
|
auto _sosWaterBlock = temperatureToSoundSpeed(sosWaterBlock, "marczak");
|
|
auto _sosWaterRefBlock = temperatureToSoundSpeed(sosWaterRefBlock, "marczak");
|
|
switch (Recon::transParams::version) {
|
|
case 1: {
|
|
return detectTofAndAttMex(
|
|
AscanBlock, AscanRefBlock, distBlock, distRefBlock,
|
|
_sosWaterBlock, _sosWaterRefBlock, Recon::transParams::resampleFactor, Recon::transParams::nThreads,
|
|
expectedSOSWater, Recon::transParams::useTimeWindowing,
|
|
Recon::transParams::aScanReconstructionFrequency, Recon::transParams::detectionWindowATT,
|
|
Recon::transParams::offsetElectronic, Recon::transParams::detectionWindowSOS, Recon::transParams::minSpeedOfSound,
|
|
Recon::transParams::maxSpeedOfSound, Recon::transParams::gaussWindow);
|
|
}
|
|
case 2:
|
|
default:
|
|
return detectTofAndAtt(
|
|
AscanBlock, AscanRefBlock, distBlock, distRefBlock,
|
|
_sosWaterBlock, _sosWaterRefBlock, Recon::transParams::resampleFactor, Recon::transParams::nThreads,
|
|
expectedSOSWater, Recon::transParams::useTimeWindowing,
|
|
Recon::transParams::aScanReconstructionFrequency, Recon::transParams::detectionWindowATT,
|
|
Recon::transParams::offsetElectronic, Recon::transParams::detectionWindowSOS, Recon::transParams::minSpeedOfSound,
|
|
Recon::transParams::maxSpeedOfSound, Recon::transParams::gaussWindow);
|
|
}
|
|
}
|
|
}
|