diff --git a/src/transmissionReconstruction/reconstruction/solvingEquationSystem/TVAL/TVAL.cpp b/src/transmissionReconstruction/reconstruction/solvingEquationSystem/TVAL/TVAL.cpp index 70a9859..152b2e5 100644 --- a/src/transmissionReconstruction/reconstruction/solvingEquationSystem/TVAL/TVAL.cpp +++ b/src/transmissionReconstruction/reconstruction/solvingEquationSystem/TVAL/TVAL.cpp @@ -159,13 +159,31 @@ namespace Recon int * xIdxs = new int[M.getRowVector().getDataSize()]; std::copy(M.getRowVector().getData(),M.getRowVector().getData()+M.getRowVector().getDataSize(),xIdxs); Aurora::Matrix values = M.getValVector(); + size_t cols = M.getM(), rows = M.getN(); int nz = std::max(M.getColVector().getDataSize(),std::max(M.getRowVector().getDataSize(),M.getValVector().getDataSize())); + sparse_matrix_t A; + sparse_matrix_t csrA; + mkl_sparse_d_create_coo(&A, sparse_index_base_t::SPARSE_INDEX_BASE_ZERO, rows, cols, nz, yIdxs, xIdxs,values.getData()); + mkl_sparse_convert_csr(A, sparse_operation_t::SPARSE_OPERATION_NON_TRANSPOSE, &csrA); + int n_rows,n_cols; + int *rows_start,*rows_end,*col_indx; + double * csrValues; + sparse_index_base_t index; + mkl_sparse_d_export_csr(csrA, &index, &n_rows, &n_cols, &rows_start, &rows_end, &col_indx, &csrValues); + int *row_idx = new int[n_rows+1]; + std::copy(rows_start,rows_start+n_rows,row_idx); + row_idx[n_rows] = rows_end[n_rows-1]; float* bData = new float[b.getDataSize()]; std::copy(b.getData(),b.getData()+b.getDataSize(),bData); size_t bDims[3]={(size_t)b.getDimSize(0),(size_t)b.getDimSize(1),(size_t)b.getDimSize(2)}; size_t rdims[3] = {(size_t)dims[0], (size_t)dims[1], (size_t)dims[2]}; bool pagelocked = false; - auto result = TVALGPU(xIdxs, yIdxs, values.getData(), M.getM(), M.getN(), nz, bData, bDims, rdims, opt, device, false); + + + auto result = TVALGPU(row_idx, col_indx, csrValues, M.getM(), M.getN(), nz, bData, bDims, rdims, opt, device, false); + mkl_sparse_destroy(A); + mkl_sparse_destroy(csrA); + delete [] row_idx; delete [] xIdxs; delete [] yIdxs; delete [] bData;