preprocessAScanBlockForReflection Test passed
(left with Accuracy problem)
This commit is contained in:
@@ -0,0 +1,439 @@
|
||||
#include "preprocessAScanBlockForReflection.h"
|
||||
|
||||
#include "Function.h"
|
||||
#include "Function1D.h"
|
||||
#include "Function2D.h"
|
||||
#include "Function3D.h"
|
||||
#include "Matrix.h"
|
||||
#include "common/dataBlockCreation/removeDataFromArrays.h"
|
||||
#include "config/config.h"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <mkl_cblas.h>
|
||||
#include <mkl_vml_functions.h>
|
||||
#include <vector>
|
||||
namespace Recon {
|
||||
|
||||
Aurora::Matrix _createDiffVector(const Aurora::Matrix & aMatrix, double beginValue,double endValue){
|
||||
auto r = Aurora::zeros(1,aMatrix.getDataSize()+1);
|
||||
r[0] = beginValue;
|
||||
for (size_t i = 1; i < aMatrix.getDataSize(); i++)
|
||||
{
|
||||
r[i] = aMatrix[i] - aMatrix[i-1];
|
||||
}
|
||||
r[aMatrix.getDataSize()] = endValue;
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @param aMatrix
|
||||
* @param op add 0, sub 1
|
||||
* @return Aurora::Matrix
|
||||
*/
|
||||
Aurora::Matrix _blockOp(const Aurora::Matrix & aMatrix,int op){
|
||||
if (aMatrix.isComplex()){
|
||||
std::cerr<<"MatrixColDiff not support complex!"<<std::endl;
|
||||
return Aurora::Matrix();
|
||||
}
|
||||
else{
|
||||
if (aMatrix.isVector())
|
||||
{
|
||||
Aurora::Matrix result = Aurora::zeros(aMatrix.getDimSize(0)>1?aMatrix.getDataSize()-1:1,
|
||||
aMatrix.getDimSize(0)>1?1:aMatrix.getDimSize(1)-1);
|
||||
if (op == 1)vdSubI(result.getDataSize(),aMatrix.getData() , 1, aMatrix.getData()+1,1,result.getData(),1);
|
||||
if (op == 0)vdAddI(result.getDataSize(),aMatrix.getData()+1 , 1, aMatrix.getData(),1,result.getData(),1);
|
||||
return result;
|
||||
}
|
||||
else{
|
||||
std::cerr<<"un expect operation!"<<std::endl;
|
||||
return Aurora::Matrix();
|
||||
// Aurora::Matrix result = Aurora::zeros(aMatrix.getDimSize(0)-1,aMatrix.getDimSize(1));
|
||||
// #pragma omp parallel for
|
||||
// for (size_t i = 0; i < aMatrix.getDimSize(1); i++)
|
||||
// {
|
||||
// if (op == 1){
|
||||
// vdSubI(result.getDimSize(0),
|
||||
// aMatrix.getData()+i*aMatrix.getDimSize(0)+1, 1,
|
||||
// aMatrix.getData()+i*aMatrix.getDimSize(0)+1, 1,
|
||||
// result.getData()+i*aMatrix.getDimSize(0),1);
|
||||
// }
|
||||
// if (op == 0){
|
||||
// vdAddI(result.getDimSize(0),
|
||||
// aMatrix.getData()+i*aMatrix.getDimSize(0)+1, 1,
|
||||
// aMatrix.getData()+i*aMatrix.getDimSize(0)+1, 1,
|
||||
// result.getData()+i*aMatrix.getDimSize(0),1);
|
||||
// }
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Aurora::Matrix generateGaussWindow(size_t winLength)
|
||||
{
|
||||
auto n = Aurora::linspace(0,5,winLength);
|
||||
return exp( -0.2 * (transpose(n)^ 2));
|
||||
}
|
||||
|
||||
|
||||
|
||||
//TODO:untested
|
||||
Aurora::Matrix offsetSignalFourier(const PreComputes &preComputes, int nfft)
|
||||
{
|
||||
|
||||
double dt = -(preComputes.offset/preComputes.timeInterval);
|
||||
double binStart = floor((double)nfft/2);
|
||||
auto temp = Aurora::zeros(1,nfft);
|
||||
for (size_t i = 0; i < temp.getDataSize(); i++)
|
||||
{
|
||||
temp[i]=i;
|
||||
}
|
||||
temp= temp-binStart;
|
||||
temp = Aurora::transpose(temp);
|
||||
Aurora::ifftshift(temp);
|
||||
auto fftBin = -1*dt*2*M_PI*temp/nfft;
|
||||
auto negCfftbin = Aurora::complex(Aurora::zeros(fftBin.getDimSize(0),fftBin.getDimSize(1),fftBin.getDimSize(2)));
|
||||
cblas_dcopy(fftBin.getDataSize(), fftBin.getData(), 1, negCfftbin.getData()+1, 2);
|
||||
auto exponent = exp(negCfftbin);
|
||||
if (!exponent.isComplex())exponent = complex(exponent);
|
||||
return exponent;
|
||||
}
|
||||
|
||||
|
||||
std::vector<Aurora::Matrix> performSignalProcessing(
|
||||
const Aurora::Matrix &blockedAScans,
|
||||
const Aurora::Matrix &blockedSL,
|
||||
const Aurora::Matrix &blockedRL,
|
||||
const Aurora::Matrix &blockedSenderPosition,
|
||||
const Aurora::Matrix &blockedReceiverPosition,
|
||||
const Aurora::Matrix &blockedGain, const Aurora::Matrix &blockedChannels,
|
||||
ExpInfo &info, const PreComputes &preComputes) {
|
||||
std::vector<Aurora::Matrix> result;
|
||||
auto t = size(blockedAScans);
|
||||
size_t nSamples = (int)t[0];
|
||||
size_t nAScans = (int)t[1];
|
||||
auto valid = Aurora::ones(blockedAScans.getDimSize(1),1);
|
||||
{
|
||||
auto blockedGain_t = blockedGain.deepCopy();
|
||||
Aurora::nantoval(blockedGain_t, 0);
|
||||
valid = valid*blockedGain_t;
|
||||
}
|
||||
|
||||
auto _blockedAScans = blockedAScans/blockedGain;
|
||||
if (reflectParams::removeDCOffset == 1)
|
||||
{
|
||||
_blockedAScans = _blockedAScans-Aurora::mean(_blockedAScans);
|
||||
}
|
||||
int winLength = 100;
|
||||
if (reflectParams::removeDCOffset == 1)
|
||||
{
|
||||
auto meanAS = mean(_blockedAScans.block(0,winLength-1,_blockedAScans.getDimSize(0) -1 -winLength));
|
||||
_blockedAScans = _blockedAScans-meanAS.getScalar();
|
||||
}
|
||||
_blockedAScans.setBlockValue(0,0,winLength-1,0);
|
||||
_blockedAScans.setBlockValue(0,_blockedAScans.getDimSize(0)-winLength-1,_blockedAScans.getDimSize(0)-1,0);
|
||||
auto maxVal = max(abs(_blockedAScans));
|
||||
auto stdVal = Aurora::std(_blockedAScans);
|
||||
auto meanVal = Aurora::mean(abs(_blockedAScans));
|
||||
auto ascanMapValue = meanVal*stdVal;
|
||||
auto temp = (stdVal == 0) * (maxVal != 0);
|
||||
Aurora::compareSet(valid,temp,1,0,Aurora::EQ);
|
||||
if (reflectParams::findDefects==1)
|
||||
{
|
||||
valid = valid*(maxVal/meanVal >= reflectParams::epsilon);
|
||||
}
|
||||
// debugOutput.maxVal = maxVal;
|
||||
// debugOutput.stdVal = stdVal;
|
||||
// debugOutput.meanVal = meanVal;
|
||||
// debugOutput.snr = maxVal ./ meanVal;
|
||||
// debugOutput.snrPass = (maxVal./meanVal) < flags.dataSelection.epsilon;
|
||||
if (reflectParams::suppressSameHead == 1)
|
||||
{
|
||||
for (size_t i = 0; i < blockedSL.getDataSize(); i++)
|
||||
{
|
||||
if (blockedSL[i] == blockedRL[i])
|
||||
{
|
||||
auto begin_ptr = _blockedAScans.getData()+i*_blockedAScans.getDimSize(0);
|
||||
int count = reflectParams::suppressSameHeadLength* sizeof(double);
|
||||
std::memset(begin_ptr,0,count);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
auto fx = fft(_blockedAScans);
|
||||
Aurora::Matrix fh;
|
||||
if (reflectParams::useCorrelation && reflectParams::matchedFilterCeAScan)
|
||||
{
|
||||
if (!preComputes.measuredCEUsed)
|
||||
{
|
||||
fh = preComputes.matchedFilter.block(1, 0, nAScans-1);
|
||||
}
|
||||
else{
|
||||
fh = preComputes.matchedFilter(Aurora::$,blockedChannels[0]-1).toMatrix();
|
||||
}
|
||||
double* value1 = Aurora::malloc(fx.getDataSize());
|
||||
vdMulI(fx.getDataSize(), fx.getData(), 2, fh.getData(), 2, value1, 1);
|
||||
double* value2 = Aurora::malloc(fx.getDataSize());
|
||||
vdMulI(fx.getDataSize(), fx.getData() + 1, 2, fh.getData() + 1, 2, value2, 1);
|
||||
double* realData = Aurora::malloc(fx.getDataSize());
|
||||
vdAdd(fx.getDataSize(), value1, value2, realData);
|
||||
Aurora::Matrix real = Aurora::Matrix::New(realData, fx.getDimSize(0), fx.getDimSize(1));
|
||||
|
||||
vdMulI(fx.getDataSize(), fx.getData() + 1, 2, fh.getData(), 2, value1, 1);
|
||||
vdMulI(fx.getDataSize(), fx.getData(), 2, fh.getData() + 1, 2, value2, 1);
|
||||
double* imagData = Aurora::malloc(fx.getDataSize());
|
||||
vdSub(fx.getDataSize(), value1, value2, imagData);
|
||||
Aurora::Matrix image = Aurora::Matrix::New(imagData, fx.getDimSize(0), fx.getDimSize(1));
|
||||
|
||||
double* complexData = Aurora::malloc(real.getDataSize(), true);
|
||||
cblas_dcopy(real.getDataSize(), real.getData(), 1 , complexData ,2);
|
||||
cblas_dcopy(image.getDataSize(), image.getData(), 1 , complexData + 1 ,2);
|
||||
Aurora::Matrix complex = Aurora::Matrix::New(complexData, real.getDimSize(0), real.getDimSize(1), 1, Aurora::Complex);
|
||||
_blockedAScans = Aurora::real(ifft(complex));
|
||||
|
||||
_blockedAScans.setBlockValue(0, 0, winLength-1, 0);
|
||||
_blockedAScans.setBlockValue(0, _blockedAScans.getDimSize(0)-winLength, _blockedAScans.getDimSize(0)-1, 0);
|
||||
_blockedAScans = fft(_blockedAScans);
|
||||
}
|
||||
else{
|
||||
_blockedAScans = fx;
|
||||
}
|
||||
auto exponent = offsetSignalFourier(preComputes, nSamples);
|
||||
// exponent.forceReshape(1, exponent.getDataSize(), 1);
|
||||
_blockedAScans =_blockedAScans*exponent;
|
||||
_blockedAScans = real(ifft(_blockedAScans));
|
||||
if (reflectParams::removeTransmissionSignal == 1) {
|
||||
auto distanceEPosRPos =
|
||||
sqrt(
|
||||
((blockedSenderPosition(0, Aurora::$).toMatrix() - blockedReceiverPosition(0, Aurora::$).toMatrix())^2) +
|
||||
((blockedSenderPosition(1, Aurora::$).toMatrix() - blockedReceiverPosition(1, Aurora::$).toMatrix())^2) +
|
||||
((blockedSenderPosition(2, Aurora::$).toMatrix() -blockedReceiverPosition(2, Aurora::$).toMatrix())^2));
|
||||
auto windowLength = reflectParams::windowLength;
|
||||
auto start = round((distanceEPosRPos/reflectParams::expectedUSSpeedRange[1])*reflectParams::aScanReconstructionFrequency);
|
||||
auto ende = round((distanceEPosRPos/reflectParams::expectedUSSpeedRange[0])*reflectParams::aScanReconstructionFrequency);
|
||||
auto area = ceil(reflectParams::expectedPulseLength*info.Wavelength+1);
|
||||
start = start- round(area*0.1);
|
||||
ende = ende + round(area*0.9);
|
||||
Aurora::compareSet(start, 1, 2, Aurora::NG);
|
||||
Aurora::compareSet(start,nSamples,nSamples,Aurora::GT);
|
||||
Aurora::compareSet(ende,nSamples,nSamples,Aurora::GT);
|
||||
|
||||
for (size_t idx = 0; idx < nAScans; idx++)
|
||||
{
|
||||
auto partData = _blockedAScans(Aurora::$,idx).toMatrix().block(0, start[idx]-1, ende[idx]-1);
|
||||
|
||||
auto l_partData = partData.getDataSize();
|
||||
auto energyMove = _createDiffVector(partData,partData[0],0);
|
||||
energyMove = _blockOp(energyMove,0);
|
||||
energyMove = (energyMove^2)*0.5;
|
||||
auto energyPot = partData^2;
|
||||
|
||||
auto energySum = energyMove + energyPot;
|
||||
|
||||
auto mean_energySum = Aurora::zeros(l_partData + windowLength,1);
|
||||
for (size_t i = 0; i < windowLength; i++)
|
||||
{
|
||||
double* begin = mean_energySum.getData() + i;
|
||||
int length = l_partData;
|
||||
vdAddI(length, energySum.getData(), 1, begin, 1, begin, 1);
|
||||
}
|
||||
mean_energySum = mean_energySum.block(0,windowLength/2-1,mean_energySum.getDataSize()-1-round((windowLength-0.001)/2));
|
||||
|
||||
auto g = _createDiffVector(mean_energySum,0,0);
|
||||
g = _blockOp(g,0);
|
||||
auto f = _createDiffVector(g,g[0],0);
|
||||
f = _blockOp(f,0);
|
||||
Aurora::compareSet(f, 0, 0, Aurora::LT);
|
||||
Aurora::compareSet(f,g,0,0,Aurora::NG);
|
||||
Aurora::compareSet(f,0,0,Aurora::NG);
|
||||
auto mean_energySum_f = f;
|
||||
long scheitelRow=0,scheitelCol=0;
|
||||
max(g,Aurora::Column,scheitelRow,scheitelCol);
|
||||
long indexRow=0, indexCol=0;
|
||||
//不知道对不对???
|
||||
auto scheitel = scheitelRow+scheitelCol;
|
||||
max(mean_energySum_f.block(0,0,scheitel),Aurora::Column,indexRow,indexCol);
|
||||
size_t index = indexRow+indexCol;
|
||||
double median_mean_energySum = Aurora::median(mean_energySum).getScalar();
|
||||
bool flag = false;
|
||||
if (mean_energySum[index] > median_mean_energySum)
|
||||
{
|
||||
for (size_t i = index; i > 0 ; i--)
|
||||
{
|
||||
if(mean_energySum[i]<median_mean_energySum){
|
||||
index = i;
|
||||
flag = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!flag) index = 0;
|
||||
}
|
||||
auto hIndex_s =mean_energySum.block(0, scheitelCol, mean_energySum.getDataSize()-1)<(0.1*mean_energySum[scheitel]);
|
||||
std::vector<int> hIndex;
|
||||
for (size_t i = 0; i < hIndex_s.getDataSize(); i++)
|
||||
{
|
||||
if (hIndex_s[i]>0)hIndex.push_back(i);
|
||||
}
|
||||
if (hIndex.empty()){
|
||||
hIndex.push_back(mean_energySum.getDataSize()-scheitel-1);
|
||||
}
|
||||
int index2 = hIndex[0]+scheitel-1+10;
|
||||
//???存在没有index???matlab中有这一分支
|
||||
auto sig_begin = index + start[idx] ;
|
||||
//在这里+1 调整会matlab的index便于后续计算的正确性
|
||||
auto sig_end = index2 + start[idx] +1;
|
||||
|
||||
winLength = sig_end+winLength+200-sig_begin+1;
|
||||
auto win = generateGaussWindow(winLength);
|
||||
double* begin = _blockedAScans.getData() + (size_t)sig_begin-1;
|
||||
int length = winLength;
|
||||
auto winReverse = Aurora::zeros(1,win.getDataSize());
|
||||
std::reverse_copy(win.getData(), win.getData()+win.getDataSize(), winReverse.getData());
|
||||
vdMulI(length, begin, 1, winReverse.getData(), 1, begin, 1);
|
||||
winLength = sig_end;
|
||||
win = generateGaussWindow(winLength);
|
||||
begin = _blockedAScans.getData() ;
|
||||
length = sig_end;
|
||||
vdMulI(length, begin, 1, win.getData(), 1, begin, 1);
|
||||
}
|
||||
}
|
||||
_blockedAScans = fft(_blockedAScans);
|
||||
if(reflectParams::useOptPulse==1){
|
||||
auto n = nSamples;
|
||||
auto nHalf = round((double)n/2);
|
||||
_blockedAScans(0,Aurora::$) = std::complex<double>{0,0};
|
||||
_blockedAScans.setBlockComplexValue(0,nHalf,_blockedAScans.getDimSize(0)-1, std::complex<double>{0,0});
|
||||
_blockedAScans.setBlock(0,1,nHalf-1,_blockedAScans.block(0,1,nHalf-1)*2);
|
||||
|
||||
|
||||
_blockedAScans = ifft(_blockedAScans, n);
|
||||
|
||||
_blockedAScans = abs(_blockedAScans.block(0,0,nSamples-1));
|
||||
auto help = _blockedAScans.deepCopy();
|
||||
help(0,Aurora::$) = 0;
|
||||
help.setBlock(0, 1, help.getDimSize(0)-1, _blockOp(_blockedAScans, 1));
|
||||
{
|
||||
auto help_bbegin = help.block(0, 0, help.getDimSize(0)-2);
|
||||
auto help_bend = help.block(0, 1, help.getDimSize(0)-1);
|
||||
help_bend = (help_bend>0)*(help_bbegin<0);
|
||||
auto tempBlock = Aurora::zeros(_blockedAScans.getDimSize(0),_blockedAScans.getDimSize(1),_blockedAScans.getDimSize(2));
|
||||
tempBlock.setBlock(0, 0, tempBlock.getDimSize(0)-2, help_bend);
|
||||
_blockedAScans = _blockedAScans*tempBlock;
|
||||
}
|
||||
help = _blockedAScans.deepCopy();
|
||||
Aurora::compareSet(help,0,0,Aurora::LT);
|
||||
|
||||
|
||||
if(reflectParams::limitNumPulsesTo>0)
|
||||
{
|
||||
|
||||
if(size(help,1)>reflectParams::limitNumPulsesTo)
|
||||
{
|
||||
auto help2 = Aurora::sort(help);
|
||||
auto temp = repmat(help2(help2.getDimSize(0)-reflectParams::limitNumPulsesTo,Aurora::$).toMatrix(),help.getDimSize(0),1);
|
||||
Aurora::compareSet(help,temp,0,Aurora::LT);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(reflectParams::normalizePeaks)
|
||||
{
|
||||
Aurora::compareSet(help,0,1,Aurora::GT);
|
||||
}
|
||||
|
||||
|
||||
|
||||
help= real(ifft(fft(help)*(preComputes.sincPeak_ft.block(1,0,nAScans-1))));
|
||||
Aurora::compareSet(_blockedAScans,0,help,Aurora::NL);
|
||||
|
||||
}
|
||||
else{
|
||||
_blockedAScans = real(ifft(_blockedAScans));
|
||||
}
|
||||
result.push_back(_blockedAScans);
|
||||
|
||||
result.push_back(valid);
|
||||
ascanMapValue[0] = (float)ascanMapValue[0];
|
||||
result.push_back(ascanMapValue);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
preprocessAScanRResult preprocessAScanBlockForReflection(
|
||||
Aurora::Matrix &AscanBlock, const Aurora::Matrix &blockedMP,
|
||||
const Aurora::Matrix &blockedSL, const Aurora::Matrix &blockedSN,
|
||||
const Aurora::Matrix &blockedRL, const Aurora::Matrix &blockedRN,
|
||||
const Aurora::Matrix &blockedSenderPosition,
|
||||
const Aurora::Matrix &blockedReceiverPosition,
|
||||
const Aurora::Matrix &blockedGain, const Aurora::Matrix &blockedChannels,
|
||||
ExpInfo &info, const PreComputes &preComputes)
|
||||
{
|
||||
preprocessAScanRResult result;
|
||||
auto valid = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
auto ascanMapValue = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
// auto dOutMaxVal = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
// auto dOutStdVal = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
// auto dOutMeanVal = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
// auto dOutSnr = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
// auto dOutSnrPass = Aurora::zeros(1, blockedMP.getDataSize()) ;
|
||||
|
||||
switch (reflectParams::version) {
|
||||
case 1:
|
||||
std::cerr<<"error USCT II only!!"<<std::endl;
|
||||
break;
|
||||
case 2:{
|
||||
#pragma omp parallel for num_threads(32)
|
||||
for (size_t i = 0; i < blockedMP.getDataSize(); i++)
|
||||
{
|
||||
auto signalPResult = performSignalProcessing(
|
||||
AscanBlock(Aurora::$, i).toMatrix(),
|
||||
blockedSL(Aurora::$, i).toMatrix(),
|
||||
blockedRL(Aurora::$, i).toMatrix(),
|
||||
blockedSenderPosition(Aurora::$, i).toMatrix(),
|
||||
blockedReceiverPosition(Aurora::$, i).toMatrix(),
|
||||
blockedGain(Aurora::$, i).toMatrix(),
|
||||
blockedChannels(Aurora::$, i).toMatrix(), info,
|
||||
preComputes);
|
||||
AscanBlock(Aurora::$,i) = signalPResult[0];
|
||||
valid(Aurora::$,i) = signalPResult[1];
|
||||
ascanMapValue(Aurora::$,i) = signalPResult[2];
|
||||
|
||||
// dOutMaxVal[idx] = dOut.maxVal;
|
||||
// dOutStdVal[idx] = dOut.stdVal;
|
||||
// dOutMeanVal[idx] = dOut.meanVal;
|
||||
// dOutSnr[idx] = dOut.snr;
|
||||
// dOutSnrPass[idx] = dOut.snrPass;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (reflectParams::findDefects==1)
|
||||
{
|
||||
auto highNoiseScore = Aurora::zeros(1, ascanMapValue.getDataSize());
|
||||
size_t count = 0;
|
||||
for (size_t i = 0; i < valid.getDataSize(); i++)
|
||||
{
|
||||
if (valid[i])highNoiseScore[count++] = ascanMapValue[i];
|
||||
}
|
||||
highNoiseScore.forceReshape(1, count, 1);
|
||||
double highNoiseScoreMean = mean(highNoiseScore).getScalar();
|
||||
double highNoiseScoreStd = Aurora::std(highNoiseScore).getScalar();
|
||||
double treshold99= (mean(highNoiseScore)+2.596*Aurora::std(highNoiseScore)).getScalar();
|
||||
Aurora::compareSet(valid,ascanMapValue,treshold99,0,Aurora::GT);
|
||||
// debugOutput.blockStatisticValue = ascanMapValue;
|
||||
// debugOutput.blockStatisticUsedData = ascanMapValue > treshold99;
|
||||
// debugOutput.maxVal = dOutMaxVal;
|
||||
// debugOutput.stdVal = dOutStdVal;
|
||||
// debugOutput.meanVal = dOutMeanVal;
|
||||
// debugOutput.snr = dOutSnr;
|
||||
// debugOutput.snrPass = dOutSnrPass;
|
||||
}
|
||||
result.AscanBlock = AscanBlock;
|
||||
result.usedData = valid;
|
||||
return result;
|
||||
}
|
||||
} // namespace Recon
|
||||
@@ -0,0 +1,26 @@
|
||||
#ifndef __PREPROCESSASCANBLOCKFORREFLECTION_H__
|
||||
#define __PREPROCESSASCANBLOCKFORREFLECTION_H__
|
||||
#include "Matrix.h"
|
||||
#include "common/getMeasurementMetaData.h"
|
||||
#include <cstddef>
|
||||
namespace Recon {
|
||||
struct preprocessAScanRResult {
|
||||
Aurora::Matrix AscanBlock;
|
||||
Aurora::Matrix usedData;
|
||||
};
|
||||
struct ExpInfo{
|
||||
size_t Wavelength;
|
||||
size_t expectedAScanLength;
|
||||
};
|
||||
|
||||
preprocessAScanRResult preprocessAScanBlockForReflection(
|
||||
Aurora::Matrix &AscanBlock, const Aurora::Matrix &mpBlock,
|
||||
const Aurora::Matrix &slBlock, const Aurora::Matrix &snBlock,
|
||||
const Aurora::Matrix &rlBlock, const Aurora::Matrix &rnBlock,
|
||||
const Aurora::Matrix &senderPositionBlock,
|
||||
const Aurora::Matrix &receiverPositionBlock,
|
||||
const Aurora::Matrix &gainBlock, const Aurora::Matrix &channelBlock,
|
||||
ExpInfo& info, const PreComputes &preComputes);
|
||||
}
|
||||
|
||||
#endif // __PREPROCESSASCANBLOCKFORREFLECTION_H__
|
||||
@@ -8,6 +8,7 @@
|
||||
#include "Matrix.h"
|
||||
#include "Sparse.h"
|
||||
#include "config/config.h"
|
||||
#include "reflectionReconstruction/preprocessData/preprocessAScanBlockForReflection.h"
|
||||
#include "transmissionReconstruction/reconstruction/buildMatrix/DGradient.h"
|
||||
#include "transmissionReconstruction/reconstruction/buildMatrix/FMM.h"
|
||||
#include "transmissionReconstruction/reconstruction/buildMatrix/buildMatrix.h"
|
||||
@@ -46,16 +47,48 @@ protected:
|
||||
};
|
||||
|
||||
TEST_F(Reconstruction_Test, determineOptimalPulse) {
|
||||
Recon::reflectParams::imageResolution = 8.6381e-04;
|
||||
Recon::reflectParams::optPulseFactor = 24;
|
||||
auto result = Recon::determineOptimalPulse(1.0000e-07,3000);
|
||||
EXPECT_EQ(3000, result.getDataSize());
|
||||
ASSERT_DOUBLE_AE(result[2], 0.0025);
|
||||
ASSERT_DOUBLE_AE(result[4], 0.0078);
|
||||
Recon::reflectParams::imageResolution = 8.925316499483377e-04;
|
||||
Recon::reflectParams::optPulseFactor = 48;
|
||||
auto result = Recon::determineOptimalPulse(1.0000e-07,4096);
|
||||
EXPECT_EQ(4096, result.getDataSize());
|
||||
MatlabReader m2("/home/krad/TestData/sincPeakft.mat");
|
||||
auto f1 = m2.read("sincPeak_ft");
|
||||
for(size_t i=0; i<f1.getDataSize(); ++i)
|
||||
{
|
||||
EXPECT_DOUBLE_AE(f1[i], 0)<<"index:"<<i;
|
||||
}
|
||||
}
|
||||
|
||||
// for(size_t i=0; i<result.getDataSize(); ++i)
|
||||
TEST_F(Reconstruction_Test, preprocessAScanBlockForReflection) {
|
||||
Recon::initalizeConfig();
|
||||
MatlabReader m2("/home/krad/TestData/preprocessRefC.mat");
|
||||
auto blockedAScans = m2.read("blockedAScans");
|
||||
auto blockedMP = m2.read("blockedMP");
|
||||
auto blockedSL = m2.read("blockedSL");
|
||||
auto blockedSN = m2.read("blockedSN");
|
||||
auto blockedRL = m2.read("blockedRL");
|
||||
auto blockedRN = m2.read("blockedRN");
|
||||
auto senderPositionBlock = m2.read("blockedSenderPosition");
|
||||
auto receiverPositionBlock = m2.read("blockedReceiverPosition");
|
||||
auto channelBlock = m2.read("blockedChannels");
|
||||
auto gainBlock = m2.read("blockedGain");
|
||||
Recon::ExpInfo info;
|
||||
info.expectedAScanLength= 4096;
|
||||
info.Wavelength=3;
|
||||
Recon::PreComputes preComputes;
|
||||
preComputes.measuredCEUsed = true;
|
||||
preComputes.offset = 5.2000e-07;
|
||||
preComputes.timeInterval = 1.0000e-07;
|
||||
preComputes.matchedFilter = m2.read("matchedFilter");
|
||||
MatlabReader m("/home/krad/TestData/sincPeakft.mat");
|
||||
preComputes.sincPeak_ft = m.read("sincPeak_ft");
|
||||
auto result = Recon::preprocessAScanBlockForReflection(blockedAScans, blockedMP, blockedSL, blockedSN, blockedRL,
|
||||
blockedRN,senderPositionBlock, receiverPositionBlock, gainBlock, channelBlock, info, preComputes);
|
||||
|
||||
size_t size = result.AscanBlock.getDataSize();
|
||||
// for(size_t i=0; i<result.AscanBlock.getDataSize(); ++i)
|
||||
// {
|
||||
// ASSERT_DOUBLE_AE(f1[i], result.outSOS[i])<<"index:"<<i;
|
||||
// ASSERT_DOUBLE_AE(f1[i], result[i])<<"index:"<<i;
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user