105 lines
3.5 KiB
C++
105 lines
3.5 KiB
C++
|
|
#define EIGEN_USE_MKL_ALL
|
||
|
|
|
||
|
|
#include <iostream>
|
||
|
|
#include <algorithm>
|
||
|
|
|
||
|
|
|
||
|
|
#include <complex>
|
||
|
|
|
||
|
|
#include "Matrix.h"
|
||
|
|
#include "Function.h"
|
||
|
|
#include "Function1D.h"
|
||
|
|
#include "Function2D.h"
|
||
|
|
#include "Function3D.h"
|
||
|
|
#include "MatlabReader.h"
|
||
|
|
|
||
|
|
int main()
|
||
|
|
{
|
||
|
|
MatlabReader m;
|
||
|
|
Input i;
|
||
|
|
MatchedFilter o;
|
||
|
|
|
||
|
|
m.read(&i, &o, "/home/krad/TestData/testCreateMatchedFilter.mat");
|
||
|
|
bool measuredCEused = true, findDefects = i.mParams->mFindDefects, removeOutliers = i.mRemoveOutliersFromCEMeasured;
|
||
|
|
|
||
|
|
Aurora::Matrix mFTime = Aurora::Matrix::fromRawData(i.mCe, 4000, 2304);
|
||
|
|
if (removeOutliers)
|
||
|
|
{
|
||
|
|
auto normSTD = Aurora::std(Aurora::abs(mFTime));
|
||
|
|
Aurora::nantoval(normSTD, 0.0);
|
||
|
|
auto sortSTD = Aurora::sort(normSTD);
|
||
|
|
int t = (int)std::round(0.4 * mFTime.getDimSize(1)) - 1;
|
||
|
|
t = t <= 0 ? 1.0 : t;
|
||
|
|
auto absFTime = abs(mFTime);
|
||
|
|
auto maxAbsFTime = max(absFTime);
|
||
|
|
auto maxFlag = maxAbsFTime < (0.1 * max(maxAbsFTime));
|
||
|
|
auto lessFlag = normSTD < sortSTD(0, t).toMatrix();
|
||
|
|
long maxCol, maxRow;
|
||
|
|
max(normSTD, Aurora::Column, maxRow, maxCol);
|
||
|
|
for (int j = 0; j < mFTime.getDimSize(1); ++j)
|
||
|
|
{
|
||
|
|
if ((bool)(lessFlag.getData()[j]) || (bool)(maxFlag.getData()[j]))
|
||
|
|
{
|
||
|
|
mFTime(Aurora::$, j) = mFTime(Aurora::$, maxCol);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
auto matchedFilter = fft(mFTime);
|
||
|
|
auto sumDiff = Aurora::zeros(1, matchedFilter.getDimSize(1));
|
||
|
|
long minCol = 998, row;
|
||
|
|
|
||
|
|
auto absMatchedFilter = abs(matchedFilter);
|
||
|
|
auto highNoiseScore = mean(absMatchedFilter) * Aurora::std(absMatchedFilter);
|
||
|
|
// auto highNoiseScore = mean( abs(matchedFilter)) * Aurora::std(absMatchedFilter);
|
||
|
|
printf("highNoiseScore[998]: %f4, highNoiseScore[2053]:%f4\r\n", highNoiseScore.getData()[998], highNoiseScore.getData()[2053]);
|
||
|
|
auto medianNoise = median(highNoiseScore);
|
||
|
|
printf("median: %f , should be: 1724817516.8468074\r\n", medianNoise.getScalar());
|
||
|
|
|
||
|
|
min(abs(highNoiseScore - median(highNoiseScore)), Aurora::Column, row, minCol);
|
||
|
|
//
|
||
|
|
// minCol = 998;
|
||
|
|
|
||
|
|
auto maxMatchFilter = matchedFilter(Aurora::$, minCol).toMatrix();
|
||
|
|
for (int k = 0; k < matchedFilter.getDimSize(1); ++k)
|
||
|
|
{
|
||
|
|
sumDiff.getData()[k] = sum(abs(matchedFilter(Aurora::$, k).toMatrix() - maxMatchFilter)).getData()[0];
|
||
|
|
}
|
||
|
|
|
||
|
|
// printf("meanSumDiff\r\n");
|
||
|
|
// auto meanSumDiff = mean(sumDiff);
|
||
|
|
// printf("meanSumDiff finish\r\n");
|
||
|
|
{
|
||
|
|
double meansumDiff = mean(sumDiff).getScalar() ;
|
||
|
|
double stdSumDiff = Aurora::std(sumDiff).getScalar();
|
||
|
|
double sumDiffJ =meansumDiff + 2.596 * stdSumDiff;
|
||
|
|
// auto indexe = sumDiff > sumDiffJ;
|
||
|
|
printf("indexe finish\r\n");
|
||
|
|
|
||
|
|
for (int l = 0; l < sumDiff.getDataSize(); ++l)
|
||
|
|
{
|
||
|
|
|
||
|
|
if (sumDiff.getData()[l]> sumDiffJ)
|
||
|
|
{
|
||
|
|
matchedFilter(Aurora::$, l) = matchedFilter(Aurora::$, minCol);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
printf("\r\n");
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
if (measuredCEused)
|
||
|
|
{
|
||
|
|
auto mFTime2 = real(ifft(-matchedFilter));
|
||
|
|
mFTime2 = mFTime2 / repmat(max(Aurora::abs(mFTime2)), mFTime2.getDimSize(0), 1);
|
||
|
|
mFTime2 = mFTime2 / repmat(sum(Aurora::abs(mFTime2)), mFTime2.getDimSize(0), 1);
|
||
|
|
matchedFilter = fft(mFTime2);
|
||
|
|
}
|
||
|
|
for (size_t i = 0; i < 10000; i += 500)
|
||
|
|
{
|
||
|
|
printf("index :%d,origin output:%f4,%f4, output:%f4,%f4\r\n",
|
||
|
|
i, o.mReal[i], o.mImag[i], matchedFilter.getData()[i * 2], matchedFilter.getData()[i * 2 + 1]);
|
||
|
|
}
|
||
|
|
|
||
|
|
return 0;
|
||
|
|
}
|