Files
Aurora/thirdparty/include/Spectra/Util/SelectionRule.h
2023-06-02 10:49:02 +08:00

301 lines
8.7 KiB
C++

// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SELECTION_RULE_H
#define SPECTRA_SELECTION_RULE_H
#include <vector> // std::vector
#include <cmath> // std::abs
#include <algorithm> // std::sort
#include <complex> // std::complex
#include <utility> // std::pair
#include <stdexcept> // std::invalid_argument
#include <Eigen/Core>
#include "TypeTraits.h"
namespace Spectra {
///
/// \defgroup Enumerations Enumerations
///
/// Enumeration types for the selection rule of eigenvalues.
///
///
/// \ingroup Enumerations
///
/// The enumeration of selection rules of desired eigenvalues.
///
enum class SortRule
{
LargestMagn, ///< Select eigenvalues with largest magnitude. Magnitude
///< means the absolute value for real numbers and norm for
///< complex numbers. Applies to both symmetric and general
///< eigen solvers.
LargestReal, ///< Select eigenvalues with largest real part. Only for general eigen solvers.
LargestImag, ///< Select eigenvalues with largest imaginary part (in magnitude). Only for general eigen solvers.
LargestAlge, ///< Select eigenvalues with largest algebraic value, considering
///< any negative sign. Only for symmetric eigen solvers.
SmallestMagn, ///< Select eigenvalues with smallest magnitude. Applies to both symmetric and general
///< eigen solvers.
SmallestReal, ///< Select eigenvalues with smallest real part. Only for general eigen solvers.
SmallestImag, ///< Select eigenvalues with smallest imaginary part (in magnitude). Only for general eigen solvers.
SmallestAlge, ///< Select eigenvalues with smallest algebraic value. Only for symmetric eigen solvers.
BothEnds ///< Select eigenvalues half from each end of the spectrum. When
///< `nev` is odd, compute more from the high end. Only for symmetric eigen solvers.
};
/// \cond
// When comparing eigenvalues, we first calculate the "target" to sort.
// For example, if we want to choose the eigenvalues with
// largest magnitude, the target will be -abs(x).
// The minus sign is due to the fact that std::sort() sorts in ascending order.
// Default target: throw an exception
template <typename Scalar, SortRule Rule>
class SortingTarget
{
public:
static ElemType<Scalar> get(const Scalar& val)
{
using std::abs;
throw std::invalid_argument("incompatible selection rule");
return -abs(val);
}
};
// Specialization for SortRule::LargestMagn
// This covers [float, double, complex] x [SortRule::LargestMagn]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::LargestMagn>
{
public:
static ElemType<Scalar> get(const Scalar& val)
{
using std::abs;
return -abs(val);
}
};
// Specialization for SortRule::LargestReal
// This covers [complex] x [SortRule::LargestReal]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::LargestReal>
{
public:
static RealType get(const std::complex<RealType>& val)
{
return -val.real();
}
};
// Specialization for SortRule::LargestImag
// This covers [complex] x [SortRule::LargestImag]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::LargestImag>
{
public:
static RealType get(const std::complex<RealType>& val)
{
using std::abs;
return -abs(val.imag());
}
};
// Specialization for SortRule::LargestAlge
// This covers [float, double] x [SortRule::LargestAlge]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::LargestAlge>
{
public:
static Scalar get(const Scalar& val)
{
return -val;
}
};
// Here SortRule::BothEnds is the same as SortRule::LargestAlge, but
// we need some additional steps, which are done in
// SymEigsSolver.h => retrieve_ritzpair().
// There we move the smallest values to the proper locations.
template <typename Scalar>
class SortingTarget<Scalar, SortRule::BothEnds>
{
public:
static Scalar get(const Scalar& val)
{
return -val;
}
};
// Specialization for SortRule::SmallestMagn
// This covers [float, double, complex] x [SortRule::SmallestMagn]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::SmallestMagn>
{
public:
static ElemType<Scalar> get(const Scalar& val)
{
using std::abs;
return abs(val);
}
};
// Specialization for SortRule::SmallestReal
// This covers [complex] x [SortRule::SmallestReal]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::SmallestReal>
{
public:
static RealType get(const std::complex<RealType>& val)
{
return val.real();
}
};
// Specialization for SortRule::SmallestImag
// This covers [complex] x [SortRule::SmallestImag]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::SmallestImag>
{
public:
static RealType get(const std::complex<RealType>& val)
{
using std::abs;
return abs(val.imag());
}
};
// Specialization for SortRule::SmallestAlge
// This covers [float, double] x [SortRule::SmallestAlge]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::SmallestAlge>
{
public:
static Scalar get(const Scalar& val)
{
return val;
}
};
// Sort eigenvalues
template <typename T, SortRule Rule>
class SortEigenvalue
{
private:
using Index = Eigen::Index;
using IndexArray = std::vector<Index>;
const T* m_evals;
IndexArray m_index;
public:
// Sort indices according to the eigenvalues they point to
inline bool operator()(Index i, Index j)
{
return SortingTarget<T, Rule>::get(m_evals[i]) < SortingTarget<T, Rule>::get(m_evals[j]);
}
SortEigenvalue(const T* start, Index size) :
m_evals(start), m_index(size)
{
for (Index i = 0; i < size; i++)
{
m_index[i] = i;
}
std::sort(m_index.begin(), m_index.end(), *this);
}
inline IndexArray index() const { return m_index; }
inline void swap(IndexArray& other) { m_index.swap(other); }
};
// Sort values[:len] according to the selection rule, and return the indices
template <typename Scalar>
std::vector<Eigen::Index> argsort(SortRule selection, const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>& values, Eigen::Index len)
{
using Index = Eigen::Index;
// Sort Ritz values and put the wanted ones at the beginning
std::vector<Index> ind;
switch (selection)
{
case SortRule::LargestMagn:
{
SortEigenvalue<Scalar, SortRule::LargestMagn> sorting(values.data(), len);
sorting.swap(ind);
break;
}
case SortRule::BothEnds:
case SortRule::LargestAlge:
{
SortEigenvalue<Scalar, SortRule::LargestAlge> sorting(values.data(), len);
sorting.swap(ind);
break;
}
case SortRule::SmallestMagn:
{
SortEigenvalue<Scalar, SortRule::SmallestMagn> sorting(values.data(), len);
sorting.swap(ind);
break;
}
case SortRule::SmallestAlge:
{
SortEigenvalue<Scalar, SortRule::SmallestAlge> sorting(values.data(), len);
sorting.swap(ind);
break;
}
default:
throw std::invalid_argument("unsupported selection rule");
}
// For SortRule::BothEnds, the eigenvalues are sorted according to the
// SortRule::LargestAlge rule, so we need to move those smallest values to the left
// The order would be
// Largest => Smallest => 2nd largest => 2nd smallest => ...
// We keep this order since the first k values will always be
// the wanted collection, no matter k is nev_updated (used in SymEigsBase::restart())
// or is nev (used in SymEigsBase::sort_ritzpair())
if (selection == SortRule::BothEnds)
{
std::vector<Index> ind_copy(ind);
for (Index i = 0; i < len; i++)
{
// If i is even, pick values from the left (large values)
// If i is odd, pick values from the right (small values)
if (i % 2 == 0)
ind[i] = ind_copy[i / 2];
else
ind[i] = ind_copy[len - 1 - i / 2];
}
}
return ind;
}
// Default vector length
template <typename Scalar>
std::vector<Eigen::Index> argsort(SortRule selection, const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>& values)
{
return argsort<Scalar>(selection, values, values.size());
}
/// \endcond
} // namespace Spectra
#endif // SPECTRA_SELECTION_RULE_H