Files
Aurora/thirdparty/include/Spectra/MatOp/SparseRegularInverse.h
2023-06-02 10:49:02 +08:00

136 lines
4.6 KiB
C++

// Copyright (C) 2017-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SPARSE_REGULAR_INVERSE_H
#define SPECTRA_SPARSE_REGULAR_INVERSE_H
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <Eigen/IterativeLinearSolvers>
#include <stdexcept>
namespace Spectra {
///
/// \ingroup MatOp
///
/// This class defines matrix operations required by the generalized eigen solver
/// in the regular inverse mode. For a sparse and positive definite matrix \f$B\f$,
/// it implements the matrix-vector product \f$y=Bx\f$ and the linear equation
/// solving operation \f$y=B^{-1}x\f$.
///
/// This class is intended to be used with the SymGEigsSolver generalized eigen solver
/// in the regular inverse mode.
///
/// \tparam Scalar_ The element type of the matrix, for example,
/// `float`, `double`, and `long double`.
/// \tparam Uplo Either `Eigen::Lower` or `Eigen::Upper`, indicating which
/// triangular part of the matrix is used.
/// \tparam Flags Either `Eigen::ColMajor` or `Eigen::RowMajor`, indicating
/// the storage format of the input matrix.
/// \tparam StorageIndex The type of the indices for the sparse matrix.
///
template <typename Scalar_, int Uplo = Eigen::Lower, int Flags = Eigen::ColMajor, typename StorageIndex = int>
class SparseRegularInverse
{
public:
///
/// Element type of the matrix.
///
using Scalar = Scalar_;
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using MapConstVec = Eigen::Map<const Vector>;
using MapVec = Eigen::Map<Vector>;
using SparseMatrix = Eigen::SparseMatrix<Scalar, Flags, StorageIndex>;
using ConstGenericSparseMatrix = const Eigen::Ref<const SparseMatrix>;
ConstGenericSparseMatrix m_mat;
const Index m_n;
Eigen::ConjugateGradient<SparseMatrix> m_cg;
mutable CompInfo m_info;
public:
///
/// Constructor to create the matrix operation object.
///
/// \param mat An **Eigen** sparse matrix object, whose type can be
/// `Eigen::SparseMatrix<Scalar, ...>` or its mapped version
/// `Eigen::Map<Eigen::SparseMatrix<Scalar, ...> >`.
///
template <typename Derived>
SparseRegularInverse(const Eigen::SparseMatrixBase<Derived>& mat) :
m_mat(mat), m_n(mat.rows())
{
static_assert(
static_cast<int>(Derived::PlainObject::IsRowMajor) == static_cast<int>(SparseMatrix::IsRowMajor),
"SparseRegularInverse: the \"Flags\" template parameter does not match the input matrix (Eigen::ColMajor/Eigen::RowMajor)");
if (mat.rows() != mat.cols())
throw std::invalid_argument("SparseRegularInverse: matrix must be square");
m_cg.compute(mat);
m_info = (m_cg.info() == Eigen::Success) ?
CompInfo::Successful :
CompInfo::NumericalIssue;
}
///
/// Return the number of rows of the underlying matrix.
///
Index rows() const { return m_n; }
///
/// Return the number of columns of the underlying matrix.
///
Index cols() const { return m_n; }
///
/// Returns the status of the computation.
/// The full list of enumeration values can be found in \ref Enumerations.
///
CompInfo info() const { return m_info; }
///
/// Perform the solving operation \f$y=B^{-1}x\f$.
///
/// \param x_in Pointer to the \f$x\f$ vector.
/// \param y_out Pointer to the \f$y\f$ vector.
///
// y_out = inv(B) * x_in
void solve(const Scalar* x_in, Scalar* y_out) const
{
MapConstVec x(x_in, m_n);
MapVec y(y_out, m_n);
y.noalias() = m_cg.solve(x);
m_info = (m_cg.info() == Eigen::Success) ?
CompInfo::Successful :
CompInfo::NotConverging;
if (m_info != CompInfo::Successful)
throw std::runtime_error("SparseRegularInverse: CG solver does not converge");
}
///
/// Perform the matrix-vector multiplication operation \f$y=Bx\f$.
///
/// \param x_in Pointer to the \f$x\f$ vector.
/// \param y_out Pointer to the \f$y\f$ vector.
///
// y_out = B * x_in
void perform_op(const Scalar* x_in, Scalar* y_out) const
{
MapConstVec x(x_in, m_n);
MapVec y(y_out, m_n);
y.noalias() = m_mat.template selfadjointView<Uplo>() * x;
}
};
} // namespace Spectra
#endif // SPECTRA_SPARSE_REGULAR_INVERSE_H