Files
Aurora/test/CudaMatrix_Test.cpp

2471 lines
74 KiB
C++

#include <complex>
#include <cstdio>
#include <gtest/gtest.h>
#include "AuroraDefs.h"
#include "Matrix.h"
#include "CudaMatrix.h"
#include "Function.h"
#include "Function1D.h"
#include "Function2D.h"
#include "Function3D.h"
class CudaMatrix_Test : public ::testing::Test {
protected:
static void SetUpCudaMatrixTester() {
}
static void TearDownTestCase() {
}
void SetUp() {
}
void TearDown() {
}
};
TEST_F(CudaMatrix_Test, MatrixAdd) {
{
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -1;
B[i] = i;
}
printf("Test CudaMatrix operator+(const CudaMatrix &aMatrix) const \r\n");
//CudaMatrix operator+(const CudaMatrix &aMatrix) const
auto C = A+B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto dC = (dA+dB);
auto dhC = dC.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(C[i],dhC[i]);
}
printf("Test CudaMatrix operator+(float aScalar) const \r\n");
//CudaMatrix operator+(float aScalar) const
auto D = C+0.5;
auto dD = dC+0.5;
auto dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix operator+(float aScalar, const CudaMatrix &aMatrix) \r\n");
// CudaMatrix operator+(float aScalar, const CudaMatrix &aMatrix)
dD = 0.5 + dC;
dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix &operator+(float aScalar, CudaMatrix &&aMatrix) \r\n");
// CudaMatrix &operator+(float aScalar, CudaMatrix &&aMatrix)
{
auto dD2 = 0.5 + (dA+dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
printf("Test CudaMatrix &operator+(CudaMatrix &&aMatrix, float aScalar) \r\n");
// CudaMatrix &operator+(CudaMatrix &&aMatrix, float aScalar)
{
auto dD2 = (dA+dB)+0.5;
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix) const
printf("Test CudaMatrix operator+(CudaMatrix &&aMatrix) const \r\n");
{
auto D = A+C;
auto dD2 = dA+(dA+dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix,CudaMatrix &aOther)
printf("Test CudaMatrix operator+(CudaMatrix &&aMatrix,CudaMatrix &aOther) \r\n");
{
auto D = A+C;
auto dD2 = (dA+dB)+dA;
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
}
{
float *dataA = new float[10000];
float *dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,100,1,Aurora::Complex);
auto C = A+B;
std::complex<float> scalar(-1,-1);
auto dA = A.toDeviceMatrix();
auto dC = (dA+scalar);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = A.toDeviceMatrix()+scalar;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = scalar+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = A+1;
dC = (dA+1);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index"<<i;
}
dC = A.toDeviceMatrix()+1;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = 1+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixAddmm) {
//real
{
auto A = Aurora::zeros(100,100,1);
auto B = Aurora::zeros(100,100,1);
for (size_t i = 0; i < 10000; i++)
{
A[i] = -1;
B[i] = 8;
}
auto C = B-1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
float *dataA = Aurora::random(100*100*2);
float *dataB = Aurora::random(100*100*2);
auto A = Aurora::Matrix::fromRawData(dataA, 100,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,100,1,Aurora::Complex);
auto C = B+A;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&,
auto dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&,
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&,
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixAddmv) {
//real
{
auto A = Aurora::zeros(100,100,1);
auto B = Aurora::ones(100,1,1);
auto C = A+1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA+B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()+dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
//Matrix& + Matrix&, row mode
dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + Matrix&&, row mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + vec&&, row mode
dC = dA+B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()+dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataC[i] = -1;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto C = A+D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA+B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()+dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
B.forceReshape(1, 50, 1);
A.forceReshape(100, 50, 1);
dA.forceReshape(100, 50, 1);
//Matrix& + Matrix&, row mode
dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + Matrix&&, row mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + vec&&, row mode
dC = dA+B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()+dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complexM - realv
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,1,1);
auto C = A-1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + vec&, col mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec& + Matrix&&, col mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA+B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, col mode
dC = B.toDeviceMatrix()+dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
dA.forceReshape(50, 100, 1);
A.forceReshape(50, 100, 1);
B.forceReshape(1, 100, 1);
//Matrix& + vec&, row mode
dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + vec&, row mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec& + Matrix&&, row mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, row mode
dC = dA+B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, row mode
dC = B.toDeviceMatrix()+dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//realM - complexV
{
float *dataA = new float[5000];
float *dataC = new float[10000];
float *dataB = new float[100];
for (size_t i = 0; i < 10000; i++)
{
if (i<5000)dataA[i] = 8;
dataC[i] = -1;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto C = A+D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
dA.forceReshape(100, 50, 1);
A.forceReshape(100, 50, 1);
B.forceReshape(1, 50, 1);
//Matrix& + Matrix&, row mode
dC = (dA+dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()+dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, row mode
dC = dB+A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixMul) {
{
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -1;
B[i] = i;
}
printf("Test CudaMatrix operator*(const CudaMatrix &aMatrix) const \r\n");
//CudaMatrix operator+(const CudaMatrix &aMatrix) const
auto C = A*B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto dC = (dA*dB);
auto dhC = dC.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(C[i],dhC[i]);
}
printf("Test CudaMatrix operator*(float aScalar) const \r\n");
//CudaMatrix operator+(float aScalar) const
auto D = C*0.5;
auto dD = dC*0.5;
auto dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix operator*(float aScalar, const CudaMatrix &aMatrix) \r\n");
// CudaMatrix operator+(float aScalar, const CudaMatrix &aMatrix)
dD = 0.5 * dC;
dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix &operator*(float aScalar, CudaMatrix &&aMatrix) \r\n");
// CudaMatrix &operator+(float aScalar, CudaMatrix &&aMatrix)
{
auto dD2 = 0.5 * (dA*dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
printf("Test CudaMatrix &operator*(CudaMatrix &&aMatrix, float aScalar) \r\n");
// CudaMatrix &operator+(CudaMatrix &&aMatrix, float aScalar)
{
auto dD2 = (dA*dB)*0.5;
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix) const
printf("Test CudaMatrix operator*(CudaMatrix &&aMatrix) const \r\n");
{
auto D = A*C;
auto dD2 = dA*(dA*dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator*(CudaMatrix &&aMatrix,CudaMatrix &aOther)
printf("Test CudaMatrix operator*(CudaMatrix &&aMatrix,CudaMatrix &aOther) \r\n");
{
auto D = A*C;
auto dD2 = (dA*dB)*dA;
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
}
{
float *dataA = new float[100];
float *dataB = new float[100];
for (size_t i = 0; i < 100; i++)
{
dataA[i] = 8;
dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 10,5,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 10,5,1,Aurora::Complex);
auto C = A*B;
std::complex<float> scalar(-1,-1);
auto dA = A.toDeviceMatrix();
auto dC = (dA*scalar);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = A.toDeviceMatrix()*scalar;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = scalar*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = A*2;
dC = (dA*2);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index"<<i;
}
dC = A.toDeviceMatrix()*2;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = 2*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixMulmm) {
//real
{
auto A = Aurora::zeros(100,100,1);
auto B = Aurora::zeros(100,100,1);
for (size_t i = 0; i < 10000; i++)
{
A[i] = -1;
B[i] = 8;
}
auto C = B*-1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& * Matrix&, col mode
auto dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& * Matrix&, col mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& * Matrix&&, col mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
float *dataA = new float[10000];
float *dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,50,1,Aurora::Complex);
auto C = B*A;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixMulmv) {
//real
{
float *dataA = new float[10000];
float *dataB = new float[100];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
if(i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,100,1);
auto B = Aurora::Matrix::fromRawData(dataB, 100,1,1);
auto C = A*(-1);
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA*B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()*dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
//Matrix& + Matrix&, row mode
dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + Matrix&&, row mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + vec&&, row mode
dC = dA*B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()*dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataC[i] = -1;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto C = A*D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA*B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()*dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
B.forceReshape(1, 50, 1);
A.forceReshape(100, 50, 1);
dA.forceReshape(100, 50, 1);
//Matrix& + Matrix&, row mode
dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + Matrix&&, row mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& + vec&&, row mode
dC = dA*B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()*dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complexM - realv
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,1,1);
auto C = A*(-1);
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + vec&, col mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec& * Matrix&&, col mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA*B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, col mode
dC = B.toDeviceMatrix()*dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
dA.forceReshape(50, 100, 1);
A.forceReshape(50, 100, 1);
B.forceReshape(1, 100, 1);
//Matrix& + vec&, row mode
dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + vec&, row mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec& + Matrix&&, row mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, row mode
dC = dA*B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, row mode
dC = B.toDeviceMatrix()*dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//realM - complexV
{
float *dataA = new float[5000];
float *dataC = new float[10000];
float *dataB = new float[100];
for (size_t i = 0; i < 10000; i++)
{
if (i<5000)dataA[i] = 8;
dataC[i] = -1;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto C = A*D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, col mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
dA.forceReshape(100, 50, 1);
A.forceReshape(100, 50, 1);
B.forceReshape(1, 50, 1);
//Matrix& + Matrix&, row mode
dC = (dA*dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + Matrix&&, row mode
dC = dB*A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixSub) {
{
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -1;
B[i] = i;
}
printf("Test CudaMatrix operator-(const CudaMatrix &aMatrix) const \r\n");
//CudaMatrix operator+(const CudaMatrix &aMatrix) const
auto C = A-B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto dC = (dA-dB);
auto dhC = dC.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(C[i],dhC[i]);
}
printf("Test CudaMatrix operator-(float aScalar) const \r\n");
//CudaMatrix operator+(float aScalar) const
auto D = C-0.5;
auto dD = dC-0.5;
auto dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix operator-(float aScalar, const CudaMatrix &aMatrix) \r\n");
// CudaMatrix operator+(float aScalar, const CudaMatrix &aMatrix)
D = 0.5 - C;
dD = 0.5 - C.toDeviceMatrix();
dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix &operator-(float aScalar, CudaMatrix &&aMatrix) \r\n");
// CudaMatrix &operator+(float aScalar, CudaMatrix &&aMatrix)
{
auto dD2 = 0.5 - (dA-dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
D = C - 0.5;
printf("Test CudaMatrix &operator-(CudaMatrix &&aMatrix, float aScalar) \r\n");
// CudaMatrix &operator+(CudaMatrix &&aMatrix, float aScalar)
{
auto dD2 = (dA-dB)-0.5;
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix) const
printf("Test CudaMatrix operator-(CudaMatrix &&aMatrix) const \r\n");
{
auto D = A-C;
auto dD2 = dA-(dA-dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix,CudaMatrix &aOther)
printf("Test CudaMatrix operator-(CudaMatrix &&aMatrix,CudaMatrix &aOther) \r\n");
{
auto D = A-C;
auto dD2 = dA- (dA-dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
}
{
float *dataA = new float[10000];
float *dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,100,1,Aurora::Complex);
auto C = A-B;
std::complex<float> scalar(-1,-1);
auto dA = A.toDeviceMatrix();
auto dC = (dA-scalar);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = A.toDeviceMatrix()-scalar;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = B-A;
dC = scalar-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = A-1;
dC = (dA-1);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index"<<i;
}
dC = A.toDeviceMatrix()-1;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 1-A;
dC = 1-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixSubmm) {
//real
{
auto A = Aurora::zeros(100,100,1);
auto B = Aurora::zeros(100,100,1);
for (size_t i = 0; i < 10000; i++)
{
A[i] = 1;
B[i] = 8;
}
auto C = B-1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto dC = (dB-dA);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = dB - A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
auto dataA = new float[10000];
auto dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 1;
dataB[i] = 8;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,50,1,Aurora::Complex);
auto C = A-B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&
auto dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = B-A;
//Matrix& + Matrix&&,
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//real & complex
{
auto dataA = new float[10000];
auto dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 1;
dataB[i] = 8;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1);
auto B = Aurora::Matrix::fromRawData(dataB, 100,50,1,Aurora::Complex);
auto C = A-B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix&(real) - Matrix&(complex)
auto dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i<<", A:"<<A[i]<<", B:"<<B[i/2];
}
//Matrix&&(real) - Matrix&(complex)
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&(real) - Matrix&&(complex)
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = B-A;
//Matrix&(complex) - Matrix&&(real)
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&&(complex) - Matrix&(real)
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&(complex) - Matrix&(real)
dC = dB-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixSubmv) {
//real
{
auto A = Aurora::ones(100,100,1)*8;
auto B = Aurora::ones(100,1,1);
auto C = A-1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 1- A;
//Matrix& + Matrix&&, col mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
C = A-1;
//Matrix& - Matrix&, row mode
dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& - Matrix&, row mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& - vec&&, row mode
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 1- A;
//Matrix& + Matrix&&, row mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataC[i] = -1;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto C = A-D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = D-A;
//Matrix& + Matrix&&, col mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
B.forceReshape(1, 50, 1);
A.forceReshape(100, 50, 1);
D.forceReshape(100, 50, 1);
dA.forceReshape(100, 50, 1);
C= A-D;
//Matrix& - Matrix&, row mode
dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& - Matrix&, row mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& - vec&&, row mode
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C= D - A;
//Matrix& + Matrix&&, row mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complexM - realv
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
if (i<100)dataB[i] = 1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,1,1);
auto C = A-1;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + vec&, col mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C=1-A;
//vec& + Matrix&&, col mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, col mode
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
dA.forceReshape(50, 100, 1);
A.forceReshape(50, 100, 1);
B.forceReshape(1, 100, 1);
C = A-1;
//Matrix& + vec&, row mode
dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + vec&, row mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, row mode
dC = dA-B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 1-A;
//vec& + Matrix&&, row mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, row mode
dC = B.toDeviceMatrix()-dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//realM - complexV
{
float *dataA = new float[5000];
float *dataC = new float[10000];
float *dataD = new float[10000];
float *dataB = new float[100];
for (size_t i = 0; i < 10000; i++)
{
if (i<5000)dataA[i] = 8;
dataC[i] = -1;
dataD[i] = i%2==0?8:0;
if (i<100)dataB[i] = -1;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto E = Aurora::Matrix::fromRawData(dataD, 50,100,1,Aurora::Complex);
auto C = E-D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C= D-E;
//Matrix& + Matrix&&, col mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
dA.forceReshape(100, 50, 1);
A.forceReshape(100, 50, 1);
B.forceReshape(1, 50, 1);
C= E-D;
//Matrix& + Matrix&, row mode
dC = (dA-dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()-dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C= D-E;
//Matrix& + Matrix&&, row mode
dC = dB-A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
}
}
TEST_F(CudaMatrix_Test, MatrixDiv) {
//real
{
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -2.0;
B[i] = i;
}
printf("Test CudaMatrix operator/(const CudaMatrix &aMatrix) const \r\n");
//CudaMatrix operator+(const CudaMatrix &aMatrix) const
auto C = A/B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto dC = (dA/dB);
auto dhC = dC.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(C[i],dhC[i]);
}
printf("Test CudaMatrix operator/(float aScalar) const \r\n");
//CudaMatrix operator+(float aScalar) const
auto D = C-0.5;
auto dD = dC-0.5;
auto dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix operator/(float aScalar, const CudaMatrix &aMatrix) \r\n");
// CudaMatrix operator+(float aScalar, const CudaMatrix &aMatrix)
D = 0.5 / C;
dD = 0.5 / C.toDeviceMatrix();
dhD = dD.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
printf("Test CudaMatrix &operator/(float aScalar, CudaMatrix &&aMatrix) \r\n");
// CudaMatrix &operator+(float aScalar, CudaMatrix &&aMatrix)
{
auto dD2 = 0.5 / (dA/dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
D = C / 0.5;
printf("Test CudaMatrix &operator/(CudaMatrix &&aMatrix, float aScalar) \r\n");
// CudaMatrix &operator+(CudaMatrix &&aMatrix, float aScalar)
{
auto dD2 = (dA/dB)/0.5;
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix) const
printf("Test CudaMatrix operator-(CudaMatrix &&aMatrix) const \r\n");
{
auto D = A/C;
auto dD2 = dA/(dA/dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
//CudaMatrix operator+(CudaMatrix &&aMatrix,CudaMatrix &aOther)
printf("Test CudaMatrix operator-(CudaMatrix &&aMatrix,CudaMatrix &aOther) \r\n");
{
auto D = A/C;
auto dD2 = dA/ (dA/dB);
dhD = dD2.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(D[i],dhD[i]);
}
}
}
//complex
{
float *dataA = new float[10000];
float *dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataB[i] = -2;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,100,1,Aurora::Complex);
auto C = A/B;
std::complex<float> scalar(-2,-2);
auto dA = A.toDeviceMatrix();
auto dC = (dA/scalar);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = A.toDeviceMatrix()/scalar;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = B/A;
dC = scalar/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = A/2.0;
dC = (dA/2.0);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index"<<i;
}
dC = A.toDeviceMatrix()/2.0;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 2.0/A;
dC = 2.0/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixDivmm) {
//real
{
auto A = Aurora::zeros(100,100,1);
auto B = Aurora::zeros(100,100,1);
for (size_t i = 0; i < 10000; i++)
{
A[i] = 2;
B[i] = 8;
}
auto C = B/2.0;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto dC = (dB/dA);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = dB / A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
auto dataA = new float[10000];
auto dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 2;
dataB[i] = 8;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,50,1,Aurora::Complex);
auto C = A/B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& / Matrix&
auto dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& / Matrix&
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = B/A;
//Matrix& / Matrix&&,
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//real & complex
{
auto dataA = new float[10000];
auto dataB = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 2;
dataB[i] = 8;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1);
auto B = Aurora::Matrix::fromRawData(dataB, 100,50,1,Aurora::Complex);
auto C = A/B;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix&(real) / Matrix&(complex)
auto dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i<<", A:"<<A[i]<<", B:"<<B[i/2];
}
//Matrix&&(real) / Matrix&(complex)
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&(real) / Matrix&&(complex)
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = B/A;
//Matrix&(complex) / Matrix&&(real)
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&&(complex) / Matrix&(real)
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&(complex) / Matrix&(real)
dC = dB/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
}
TEST_F(CudaMatrix_Test, MatrixDivmv) {
//real
{
auto A = Aurora::ones(100,100,1)*8;
auto B = Aurora::ones(100,1,1)*2;
auto C = A/2;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 2/A;
//Matrix& + Matrix&&, col mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
C = A/2;
//Matrix& - Matrix&, row mode
dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& - Matrix&, row mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& - vec&&, row mode
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 2/ A;
//Matrix& + Matrix&&, row mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&&, row mode
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complex
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
dataC[i] = -2;
if (i<100)dataB[i] = -2;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto C = A/D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, col mode
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = D/A;
//Matrix& + Matrix&&, col mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//vec&& + Matrix&&, col mode
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
B.forceReshape(1, 50, 1);
A.forceReshape(100, 50, 1);
D.forceReshape(100, 50, 1);
dA.forceReshape(100, 50, 1);
C= A/D;
//Matrix& / Matrix&, row mode
dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& / Matrix&, row mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize(); i++)
{
EXPECT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix& / vec&&, row mode
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C= D / A;
//Matrix& / Matrix&&, row mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& / Matrix&&, row mode
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//complexM - realv
{
float *dataA = new float[10000];
float *dataB = new float[100];
float *dataC = new float[10000];
for (size_t i = 0; i < 10000; i++)
{
dataA[i] = 8;
if (i<100)dataB[i] = 2;
}
auto A = Aurora::Matrix::fromRawData(dataA, 100,50,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB, 100,1,1);
auto C = A/2;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& / Matrix&, col mode
auto dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix&& / vec&, col mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& / vec&&, col mode
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C=2/A;
//vec& + Matrix&&, col mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, col mode
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 100, 1);
dA.forceReshape(50, 100, 1);
A.forceReshape(50, 100, 1);
B.forceReshape(1, 100, 1);
C = A/2;
//Matrix& + vec&, row mode
dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + vec&, row mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//Matrix& + vec&&, row mode
dC = dA/B.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C = 2/A;
//vec& + Matrix&&, row mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
//vec&& + Matrix&, row mode
dC = B.toDeviceMatrix()/dA;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
}
//realM - complexV
{
float *dataA = new float[5000];
float *dataC = new float[10000];
float *dataD = new float[10000];
float *dataB = new float[100];
for (size_t i = 0; i < 10000; i++)
{
if (i<5000)dataA[i] = 8;
dataC[i] = -2;
dataD[i] = i%2==0?8:0;
if (i<100)dataB[i] = -2;
}
auto A = Aurora::Matrix::fromRawData(dataA, 50,100,1);
auto B = Aurora::Matrix::fromRawData(dataB, 50,1,1,Aurora::Complex);
auto D = Aurora::Matrix::fromRawData(dataC, 50,100,1,Aurora::Complex);
auto E = Aurora::Matrix::fromRawData(dataD, 50,100,1,Aurora::Complex);
auto C = E/D;
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
//Matrix& + Matrix&, col mode
auto dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, col mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C= D/E;
//Matrix& + Matrix&&, col mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
dB.forceReshape(1, 50, 1);
dA.forceReshape(100, 50, 1);
A.forceReshape(100, 50, 1);
B.forceReshape(1, 50, 1);
C= E/D;
//Matrix& + Matrix&, row mode
dC = (dA/dB);
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
//Matrix&& + Matrix&, row mode
dC = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i));
}
C= D/E;
//Matrix& + Matrix&&, row mode
dC = dB/A.toDeviceMatrix();
for (size_t i = 0; i < C.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(C[i],dC.getValue(i))<<"index:"<<i;
}
}
}
TEST_F(CudaMatrix_Test, MatrixComplexMulAndDiv){
float * dataA = new float[100];
float * dataB = new float[100];
auto A = Aurora::Matrix::fromRawData(dataA,5,10,1,Aurora::Complex);
auto B = Aurora::Matrix::fromRawData(dataB,5,10,1,Aurora::Complex);
for (size_t i = 0; i < 100; i++)
{
dataA[i] = (float)1;
dataB[i] = (float)(-2);
}
auto dA = A.toDeviceMatrix();
auto dB = B.toDeviceMatrix();
auto ret1 = A*B;
auto ret2 = dA*dB;
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<"index:"<<i;
}
ret2 = A.toDeviceMatrix()*dB;
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<"index:"<<i;
}
ret2 = dA*B.toDeviceMatrix();
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<"index:"<<i;
}
ret1 = A/B;
ret2 = dA/dB;
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<"index:"<<i;
}
ret2 = A.toDeviceMatrix()/dB;
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<"index:"<<i;
}
ret2 = dA/B.toDeviceMatrix();
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
{
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<"index:"<<i;
}
}
TEST_F(CudaMatrix_Test, MatrixPow){
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -1+0.2*i;
}
auto dA= A.toDeviceMatrix();
{
auto R = A^0;
auto dR = dA^0;
auto dhR = dR.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R = A^1;
auto dR = dA^1;
auto dhR = dR.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R = A^2;
auto dR = dA^2;
auto dhR = dR.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R = A^3;
auto dR = dA^3;
auto dhR = dR.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R = A^5;
auto dR = dA^5;
auto dhR = dR.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
}
TEST_F(CudaMatrix_Test, MatrixNeg){
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -1+0.2*i;
}
auto dA= A.toDeviceMatrix();
{
auto R = -A;
auto dR = -dA;
auto dhR = dR.toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
}
TEST_F(CudaMatrix_Test, MatrixCompare){
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
{
A[i] = -1+0.2*i;
}
auto dA= A.toDeviceMatrix();
auto dB= B.toDeviceMatrix();
{
auto R= (A<B);
auto dhR = (dA<dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (A>B);
auto dhR = (dA>dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (A<=B);
auto dhR = (dA<=dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (A>=B);
auto dhR = (dA>=dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (A==B);
auto dhR = (dA==dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (A!=B);
auto dhR = (dA!=dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (9<B);
auto dhR = (9<dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (9>B);
auto dhR = (9>dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (9<=B);
auto dhR = (9<=dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (9>=B);
auto dhR = (9>=dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (9==B);
auto dhR = (9==dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
{
auto R= (9!=B);
auto dhR = (9!=dB).toHostMatrix();
for (size_t i = 0; i < 1000; i++)
{
ASSERT_FLOAT_EQ(R[i],dhR[i]);
}
}
}
TEST_F(CudaMatrix_Test, matrixfunction)
{
printf("Test CudaMatrix block(int aDim,int aBeginIndx, int aEndIndex) const\r\n");
{
float *dataA = new float[9]{1,6,9,4,1,0,5,8,1};
float *dataB = new float[3]{1,2,3};
Aurora::CudaMatrix A = Aurora::Matrix::fromRawData(dataA, 3, 3).toDeviceMatrix();
Aurora::CudaMatrix B = Aurora::Matrix::fromRawData(dataB, 1, 3).toDeviceMatrix();
Aurora::Matrix block1 = A.block(0, 1, 2).toHostMatrix();
Aurora::Matrix block2 = A.toHostMatrix().block(0, 1, 2);
for (size_t i = 0; i < block1.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(block1[i], block2[i]);
}
block2 = A.toHostMatrix();
A.setBlockValue(0, 1, 2,-1);
block1 = A.toHostMatrix();
block2.setBlockValue(0, 1, 2,-1);
for (size_t i = 0; i < block1.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(block1[i], block2[i]);
}
Aurora::CudaMatrix C = Aurora::zeros(2,3).toDeviceMatrix();
EXPECT_TRUE(A.setBlock(0, 0, 1, C));
block1 = A.block(0, 0, 1).toHostMatrix();
block2 = C.toHostMatrix();
for(size_t i = 0; i < C.getDataSize(); i++)
{
ASSERT_FLOAT_EQ(block1[i], block2[i]);
}
}
}