Files
Aurora/src/Function2D.cpp
2023-04-23 16:02:20 +08:00

133 lines
4.6 KiB
C++

#include <iostream>
#include "Function.h"
#include "Function2D.h"
#include "Function1D.h"
//必须在Eigen之前
#include "AuroraDefs.h"
#include <Eigen/Core>
#include <Eigen/Eigen>
#include <Eigen/Dense>
using namespace Aurora;
double Aurora::immse(const Aurora::Matrix &aImageA, const Aurora::Matrix &aImageB) {
if (aImageA.getDims()!=2|| aImageB.getDims()!=2){
std::cerr<<"Fail!immse args must all 2d matrix!";
return 0.0;
}
if (!aImageB.compareShape(aImageA)){
std::cerr<<"Fail!immse args must be same shape!";
return 0.0;
}
if (aImageA.getValueType()!=Normal || aImageB.getValueType() != Normal) {
std::cerr << "Fail!immse args must be normal value type!";
return 0.0;
}
int size = aImageA.getDataSize();
auto temp = malloc(size);
vdSub(size, aImageA.getData(), aImageB.getData(), temp);
vdSqr(size, temp, temp);
double result = cblas_dasum(size, temp, 1) / (double) size;
free(temp);
return result;
}
Aurora::Matrix Aurora::inv(const Aurora::Matrix &aMatrix) {
if (aMatrix.getDims() != 2) {
std::cerr << "Fail!inv args must be 2d matrix!";
return aMatrix;
}
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
std::cerr << "Fail!inv args must be square matrix!";
return aMatrix;
}
if (aMatrix.getValueType() != Normal) {
std::cerr << "Fail!inv args must be normal value type!";
return aMatrix;
}
int size = aMatrix.getDataSize();
int *ipiv = new int[aMatrix.getDimSize(0)];
auto result = malloc(size);
cblas_dcopy(size,aMatrix.getData(), 1,result, 1);
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
delete[] ipiv;
return Matrix::New(result,aMatrix);
}
Aurora::Matrix Aurora::inv(Aurora::Matrix&& aMatrix) {
if (aMatrix.getDims() != 2) {
std::cerr << "Fail!inv args must be 2d matrix!";
return aMatrix;
}
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
std::cerr << "Fail!inv args must be square matrix!";
return aMatrix;
}
if (aMatrix.getValueType() != Normal) {
std::cerr << "Fail!inv args must be normal value type!";
return aMatrix;
}
int *ipiv = new int[aMatrix.getDimSize(0)];
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
delete[] ipiv;
return aMatrix;
}
Matrix Aurora::interp2(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
{
if (aV.getDims() != 2)
{
return Matrix();
}
if (aX1.getDimSize(0) != aY1.getDimSize(0))
{
return Matrix();
}
int columnNum = aV.getDimSize(1);
int rowNum = aV.getDimSize(0);
if(aX.getDimSize(0) != columnNum || aY.getDimSize(0) != rowNum)
{
return Matrix();
}
int nx1 = aX1.getDimSize(0);
std::shared_ptr<double> resultData = std::shared_ptr<double>(Aurora::malloc(nx1), Aurora::free);
for (int i = 0; i < nx1; ++i)
{
std::shared_ptr<double> xResultData = std::shared_ptr<double>(Aurora::malloc(columnNum), Aurora::free);
for(int j =0; j < columnNum; ++j)
{
xResultData.get()[j] = interp1(aY,aV($,j).toMatrix(),aY1(i).toMatrix(),aMethod).getData()[0];
}
Matrix xResult(xResultData,std::vector<int>{columnNum});
resultData.get()[i] = interp1(aX,xResult,aX1(i).toMatrix(),aMethod).getData()[0];
}
return Matrix(resultData,std::vector<int>{nx1});
}
Matrix Aurora::interpn(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
{
return Aurora::interp2(aY,aX,aV,aY1,aX1,aMethod);
}
Matrix Aurora::std(const Matrix &aMatrix) {
auto std = Aurora::malloc(aMatrix.getDimSize(1) * aMatrix.getDimSize(2));
Matrix src = aMatrix.isComplex() ? Aurora::abs(aMatrix) : aMatrix;
for (int i = 0; i < src.getDimSize(1); ++i) {
double *p = src.getData() + i * src.getDimSize(0);
double mean = cblas_dasum(src.getDimSize(0), p, 1) / src.getDimSize(0);
vdSubI(src.getDimSize(0), p, 1, &mean, 0, p, 1);
vdSqr(src.getDimSize(0), p, p);
std[i] = cblas_dasum(src.getDimSize(0), p, 1) / (src.getDimSize(0) - 1);
}
vdSqrt(src.getDimSize(1), std, std);
return Matrix::New(std,1,aMatrix.getDimSize(1), aMatrix.getDimSize(2));
}