Files
Aurora/thirdparty/include/Spectra/contrib/LOBPCGSolver.h
2023-06-02 10:49:02 +08:00

552 lines
18 KiB
C++

// Written by Anna Araslanova
// Modified by Yixuan Qiu
// License: MIT
#ifndef SPECTRA_LOBPCG_SOLVER_H
#define SPECTRA_LOBPCG_SOLVER_H
#include <functional>
#include <map>
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <Eigen/Eigenvalues>
#include <Eigen/SVD>
#include <Eigen/SparseCholesky>
#include "../SymGEigsSolver.h"
namespace Spectra {
///
/// \ingroup EigenSolver
///
/// *** METHOD
/// The class represent the LOBPCG algorithm, which was invented by Andrew Knyazev
/// Theoretical background of the procedure can be found in the articles below
/// - Knyazev, A.V., 2001. Toward the optimal preconditioned eigensolver : Locally optimal block preconditioned conjugate gradient method.SIAM journal on scientific computing, 23(2), pp.517 - 541.
/// - Knyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E.E., 2007. Block locally optimal preconditioned eigenvalue xolvers(BLOPEX) in HYPRE and PETSc.SIAM Journal on Scientific Computing, 29(5), pp.2224 - 2239.
///
/// *** CONDITIONS OF USE
/// Locally Optimal Block Preconditioned Conjugate Gradient(LOBPCG) is a method for finding the M smallest eigenvalues
/// and eigenvectors of a large symmetric positive definite generalized eigenvalue problem
/// \f$Ax=\lambda Bx,\f$
/// where \f$A_{NxN}\f$ is a symmetric matrix, \f$B\f$ is symmetric and positive - definite. \f$A and B\f$ are also assumed large and sparse
/// \f$\textit{M}\f$ should be \f$\<< textit{N}\f$ (at least \f$\textit{5M} < \textit{N} \f$)
///
/// *** ARGUMENTS
/// Eigen::SparseMatrix<long double> A; // N*N - Ax = lambda*Bx, lrage and sparse
/// Eigen::SparseMatrix<long double> X; // N*M - initial approximations to eigenvectors (random in general case)
/// Spectra::LOBPCGSolver<long double> solver(A, X);
/// *Eigen::SparseMatrix<long double> B; // N*N - Ax = lambda*Bx, sparse, positive definite
/// solver.setConstraints(B);
/// *Eigen::SparseMatrix<long double> Y; // N*K - constraints, already found eigenvectors
/// solver.setB(B);
/// *Eigen::SparseMatrix<long double> T; // N*N - preconditioner ~ A^-1
/// solver.setPreconditioner(T);
///
/// *** OUTCOMES
/// solver.solve(); // compute eigenpairs // void
/// solver.info(); // state of converjance // int
/// solver.residuals(); // get residuals to evaluate biases // Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
/// solver.eigenvalues(); // get eigenvalues // Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
/// solver.eigenvectors(); // get eigenvectors // Eigen::Matrix<Scalar, Eigen::Dynamic, 1>
///
/// *** EXAMPLE
/// \code{.cpp}
/// #include <Spectra/contrib/SymSparseEigsSolverLOBPCG.h>
///
/// // random A
/// Matrix a;
/// a = (Matrix::Random(10, 10).array() > 0.6).cast<long double>() * Matrix::Random(10, 10).array() * 5;
/// a = Matrix((a).triangularView<Eigen::Lower>()) + Matrix((a).triangularView<Eigen::Lower>()).transpose();
/// for (int i = 0; i < 10; i++)
/// a(i, i) = i + 0.5;
/// std::cout << a << "\n";
/// Eigen::SparseMatrix<long double> A(a.sparseView());
/// // random X
/// Eigen::Matrix<long double, 10, 2> x;
/// x = Matrix::Random(10, 2).array();
/// Eigen::SparseMatrix<long double> X(x.sparseView());
/// // solve Ax = lambda*x
/// Spectra::LOBPCGSolver<long double> solver(A, X);
/// solver.compute(10, 1e-4); // 10 iterations, L2_tolerance = 1e-4*N
/// std::cout << "info\n" << solver.info() << std::endl;
/// std::cout << "eigenvalues\n" << solver.eigenvalues() << std::endl;
/// std::cout << "eigenvectors\n" << solver.eigenvectors() << std::endl;
/// std::cout << "residuals\n" << solver.residuals() << std::endl;
/// \endcode
///
template <typename Scalar = long double>
class LOBPCGSolver
{
private:
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
typedef std::complex<Scalar> Complex;
typedef Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic> ComplexMatrix;
typedef Eigen::Matrix<Complex, Eigen::Dynamic, 1> ComplexVector;
typedef Eigen::SparseMatrix<Scalar> SparseMatrix;
typedef Eigen::SparseMatrix<Complex> SparseComplexMatrix;
const int m_n; // dimension of matrix A
const int m_nev; // number of eigenvalues requested
SparseMatrix A, X;
SparseMatrix m_Y, m_B, m_preconditioner;
bool flag_with_constraints, flag_with_B, flag_with_preconditioner;
public:
SparseMatrix m_residuals;
Matrix m_evectors;
Vector m_evalues;
int m_info;
private:
// B-orthonormalize matrix M
int orthogonalizeInPlace(SparseMatrix& M, SparseMatrix& B,
SparseMatrix& true_BM, bool has_true_BM = false)
{
SparseMatrix BM;
if (has_true_BM == false)
{
if (flag_with_B)
{
BM = B * M;
}
else
{
BM = M;
}
}
else
{
BM = true_BM;
}
Eigen::SimplicialLDLT<SparseMatrix> chol_MBM(M.transpose() * BM);
if (chol_MBM.info() != Eigen::Success)
{
// LDLT decomposition fail
m_info = chol_MBM.info();
return chol_MBM.info();
}
SparseComplexMatrix Upper_MBM = chol_MBM.matrixU().template cast<Complex>();
ComplexVector D_MBM_vec = chol_MBM.vectorD().template cast<Complex>();
D_MBM_vec = D_MBM_vec.cwiseSqrt();
for (int i = 0; i < D_MBM_vec.rows(); i++)
{
D_MBM_vec(i) = Complex(1.0, 0.0) / D_MBM_vec(i);
}
SparseComplexMatrix D_MBM_mat(D_MBM_vec.asDiagonal());
SparseComplexMatrix U_inv(Upper_MBM.rows(), Upper_MBM.cols());
U_inv.setIdentity();
Upper_MBM.template triangularView<Eigen::Upper>().solveInPlace(U_inv);
SparseComplexMatrix right_product = U_inv * D_MBM_mat;
M = M * right_product.real();
if (flag_with_B)
{
true_BM = B * M;
}
else
{
true_BM = M;
}
return Eigen::Success;
}
void applyConstraintsInPlace(SparseMatrix& X, SparseMatrix& Y,
SparseMatrix& B)
{
SparseMatrix BY;
if (flag_with_B)
{
BY = B * Y;
}
else
{
BY = Y;
}
SparseMatrix YBY = Y.transpose() * BY;
SparseMatrix BYX = BY.transpose() * X;
SparseMatrix YBY_XYX = (Matrix(YBY).bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(Matrix(BYX))).sparseView();
X = X - Y * YBY_XYX;
}
/*
return
'AB
CD'
*/
Matrix stack_4_matricies(Matrix A, Matrix B,
Matrix C, Matrix D)
{
Matrix result(A.rows() + C.rows(), A.cols() + B.cols());
result.topLeftCorner(A.rows(), A.cols()) = A;
result.topRightCorner(B.rows(), B.cols()) = B;
result.bottomLeftCorner(C.rows(), C.cols()) = C;
result.bottomRightCorner(D.rows(), D.cols()) = D;
return result;
}
Matrix stack_9_matricies(Matrix A, Matrix B, Matrix C,
Matrix D, Matrix E, Matrix F,
Matrix G, Matrix H, Matrix I)
{
Matrix result(A.rows() + D.rows() + G.rows(), A.cols() + B.cols() + C.cols());
result.block(0, 0, A.rows(), A.cols()) = A;
result.block(0, A.cols(), B.rows(), B.cols()) = B;
result.block(0, A.cols() + B.cols(), C.rows(), C.cols()) = C;
result.block(A.rows(), 0, D.rows(), D.cols()) = D;
result.block(A.rows(), A.cols(), E.rows(), E.cols()) = E;
result.block(A.rows(), A.cols() + B.cols(), F.rows(), F.cols()) = F;
result.block(A.rows() + D.rows(), 0, G.rows(), G.cols()) = G;
result.block(A.rows() + D.rows(), A.cols(), H.rows(), H.cols()) = H;
result.block(A.rows() + D.rows(), A.cols() + B.cols(), I.rows(), I.cols()) = I;
return result;
}
void sort_epairs(Vector& evalues, Matrix& evectors, SortRule SelectionRule)
{
std::function<bool(Scalar, Scalar)> cmp;
if (SelectionRule == SortRule::SmallestAlge)
cmp = std::less<Scalar>{};
else
cmp = std::greater<Scalar>{};
std::map<Scalar, Vector, decltype(cmp)> epairs(cmp);
for (int i = 0; i < m_evectors.cols(); ++i)
epairs.insert(std::make_pair(evalues(i), evectors.col(i)));
int i = 0;
for (auto& epair : epairs)
{
evectors.col(i) = epair.second;
evalues(i) = epair.first;
i++;
}
}
void removeColumns(SparseMatrix& matrix, std::vector<int>& colToRemove)
{
// remove columns through matrix multiplication
SparseMatrix new_matrix(matrix.cols(), matrix.cols() - int(colToRemove.size()));
int iCol = 0;
std::vector<Eigen::Triplet<Scalar>> tripletList;
tripletList.reserve(matrix.cols() - int(colToRemove.size()));
for (int iRow = 0; iRow < matrix.cols(); iRow++)
{
if (std::find(colToRemove.begin(), colToRemove.end(), iRow) == colToRemove.end())
{
tripletList.push_back(Eigen::Triplet<Scalar>(iRow, iCol, 1));
iCol++;
}
}
new_matrix.setFromTriplets(tripletList.begin(), tripletList.end());
matrix = matrix * new_matrix;
}
int checkConvergence_getBlocksize(SparseMatrix& m_residuals, Scalar tolerance_L2, std::vector<int>& columnsToDelete)
{
// square roots from sum of squares by column
int BlockSize = m_nev;
Scalar sum, buffer;
for (int iCol = 0; iCol < m_nev; iCol++)
{
sum = 0;
for (int iRow = 0; iRow < m_n; iRow++)
{
buffer = m_residuals.coeff(iRow, iCol);
sum += buffer * buffer;
}
if (sqrt(sum) < tolerance_L2)
{
BlockSize--;
columnsToDelete.push_back(iCol);
}
}
return BlockSize;
}
public:
LOBPCGSolver(const SparseMatrix& A, const SparseMatrix X) :
m_n(A.rows()),
m_nev(X.cols()),
A(A),
X(X),
flag_with_constraints(false),
flag_with_B(false),
flag_with_preconditioner(false),
m_info(Eigen::InvalidInput)
{
if (A.rows() != X.rows() || A.rows() != A.cols())
throw std::invalid_argument("Wrong size");
// if (m_n < 5* m_nev)
// throw std::invalid_argument("The problem size is small compared to the block size. Use standard eigensolver");
}
void setConstraints(const SparseMatrix& Y)
{
m_Y = Y;
flag_with_constraints = true;
}
void setB(const SparseMatrix& B)
{
if (B.rows() != A.rows() || B.cols() != A.cols())
throw std::invalid_argument("Wrong size");
m_B = B;
flag_with_B = true;
}
void setPreconditioner(const SparseMatrix& preconditioner)
{
m_preconditioner = preconditioner;
flag_with_preconditioner = true;
}
void compute(int maxit = 10, Scalar tol_div_n = 1e-7)
{
Scalar tolerance_L2 = tol_div_n * m_n;
int BlockSize;
int max_iter = std::min(m_n, maxit);
SparseMatrix directions, AX, AR, BX, AD, ADD, DD, BDD, BD, XAD, RAD, DAD, XBD, RBD, BR, sparse_eVecX, sparse_eVecR, sparse_eVecD, inverse_matrix;
Matrix XAR, RAR, XBR, gramA, gramB, eVecX, eVecR, eVecD;
std::vector<int> columnsToDelete;
if (flag_with_constraints)
{
// Apply the constraints Y to X
applyConstraintsInPlace(X, m_Y, m_B);
}
// Make initial vectors orthonormal
// implicit BX declaration
if (orthogonalizeInPlace(X, m_B, BX) != Eigen::Success)
{
max_iter = 0;
}
AX = A * X;
// Solve the following NxN eigenvalue problem for all N eigenvalues and -vectors:
// first approximation via a dense problem
Eigen::EigenSolver<Matrix> eigs(Matrix(X.transpose() * AX));
if (eigs.info() != Eigen::Success)
{
m_info = eigs.info();
max_iter = 0;
}
else
{
m_evalues = eigs.eigenvalues().real();
m_evectors = eigs.eigenvectors().real();
sort_epairs(m_evalues, m_evectors, SortRule::SmallestAlge);
sparse_eVecX = m_evectors.sparseView();
X = X * sparse_eVecX;
AX = AX * sparse_eVecX;
BX = BX * sparse_eVecX;
}
for (int iter_num = 0; iter_num < max_iter; iter_num++)
{
m_residuals.resize(m_n, m_nev);
for (int i = 0; i < m_nev; i++)
{
m_residuals.col(i) = AX.col(i) - m_evalues(i) * BX.col(i);
}
BlockSize = checkConvergence_getBlocksize(m_residuals, tolerance_L2, columnsToDelete);
if (BlockSize == 0)
{
m_info = Eigen::Success;
break;
}
// substitution of the original active mask
if (columnsToDelete.size() > 0)
{
removeColumns(m_residuals, columnsToDelete);
if (iter_num > 0)
{
removeColumns(directions, columnsToDelete);
removeColumns(AD, columnsToDelete);
removeColumns(BD, columnsToDelete);
}
columnsToDelete.clear(); // for next iteration
}
if (flag_with_preconditioner)
{
// Apply the preconditioner to the residuals
m_residuals = m_preconditioner * m_residuals;
}
if (flag_with_constraints)
{
// Apply the constraints Y to residuals
applyConstraintsInPlace(m_residuals, m_Y, m_B);
}
if (orthogonalizeInPlace(m_residuals, m_B, BR) != Eigen::Success)
{
break;
}
AR = A * m_residuals;
// Orthonormalize conjugate directions
if (iter_num > 0)
{
if (orthogonalizeInPlace(directions, m_B, BD, true) != Eigen::Success)
{
break;
}
AD = A * directions;
}
// Perform the Rayleigh Ritz Procedure
XAR = Matrix(X.transpose() * AR);
RAR = Matrix(m_residuals.transpose() * AR);
XBR = Matrix(X.transpose() * BR);
if (iter_num > 0)
{
XAD = X.transpose() * AD;
RAD = m_residuals.transpose() * AD;
DAD = directions.transpose() * AD;
XBD = X.transpose() * BD;
RBD = m_residuals.transpose() * BD;
gramA = stack_9_matricies(m_evalues.asDiagonal(), XAR, XAD, XAR.transpose(), RAR, RAD, XAD.transpose(), RAD.transpose(), DAD.transpose());
gramB = stack_9_matricies(Matrix::Identity(m_nev, m_nev), XBR, XBD, XBR.transpose(), Matrix::Identity(BlockSize, BlockSize), RBD, XBD.transpose(), RBD.transpose(), Matrix::Identity(BlockSize, BlockSize));
}
else
{
gramA = stack_4_matricies(m_evalues.asDiagonal(), XAR, XAR.transpose(), RAR);
gramB = stack_4_matricies(Matrix::Identity(m_nev, m_nev), XBR, XBR.transpose(), Matrix::Identity(BlockSize, BlockSize));
}
// Calculate the lowest/largest m eigenpairs; Solve the generalized eigenvalue problem.
DenseSymMatProd<Scalar> Aop(gramA);
DenseCholesky<Scalar> Bop(gramB);
SymGEigsSolver<DenseSymMatProd<Scalar>, DenseCholesky<Scalar>, GEigsMode::Cholesky>
geigs(Aop, Bop, m_nev, (std::min)(10, int(gramA.rows()) - 1));
geigs.init();
geigs.compute(SortRule::SmallestAlge);
// Mat evecs
if (geigs.info() == CompInfo::Successful)
{
m_evalues = geigs.eigenvalues();
m_evectors = geigs.eigenvectors();
sort_epairs(m_evalues, m_evectors, SortRule::SmallestAlge);
}
else
{
// Problem With General EgenVec
m_info = Eigen::NoConvergence;
break;
}
// Compute Ritz vectors
if (iter_num > 0)
{
eVecX = m_evectors.block(0, 0, m_nev, m_nev);
eVecR = m_evectors.block(m_nev, 0, BlockSize, m_nev);
eVecD = m_evectors.block(m_nev + BlockSize, 0, BlockSize, m_nev);
sparse_eVecX = eVecX.sparseView();
sparse_eVecR = eVecR.sparseView();
sparse_eVecD = eVecD.sparseView();
DD = m_residuals * sparse_eVecR; // new conjugate directions
ADD = AR * sparse_eVecR;
BDD = BR * sparse_eVecR;
DD = DD + directions * sparse_eVecD;
ADD = ADD + AD * sparse_eVecD;
BDD = BDD + BD * sparse_eVecD;
}
else
{
eVecX = m_evectors.block(0, 0, m_nev, m_nev);
eVecR = m_evectors.block(m_nev, 0, BlockSize, m_nev);
sparse_eVecX = eVecX.sparseView();
sparse_eVecR = eVecR.sparseView();
DD = m_residuals * sparse_eVecR;
ADD = AR * sparse_eVecR;
BDD = BR * sparse_eVecR;
}
X = X * sparse_eVecX + DD;
AX = AX * sparse_eVecX + ADD;
BX = BX * sparse_eVecX + BDD;
directions = DD;
AD = ADD;
BD = BDD;
} // iteration loop
// calculate last residuals
m_residuals.resize(m_n, m_nev);
for (int i = 0; i < m_nev; i++)
{
m_residuals.col(i) = AX.col(i) - m_evalues(i) * BX.col(i);
}
BlockSize = checkConvergence_getBlocksize(m_residuals, tolerance_L2, columnsToDelete);
if (BlockSize == 0)
{
m_info = Eigen::Success;
}
} // compute
Vector eigenvalues()
{
return m_evalues;
}
Matrix eigenvectors()
{
return m_evectors;
}
Matrix residuals()
{
return Matrix(m_residuals);
}
int info() { return m_info; }
};
} // namespace Spectra
#endif // SPECTRA_LOBPCG_SOLVER_H