Files
Aurora/thirdparty/include/Spectra/LinAlg/Arnoldi.h
2023-06-02 10:49:02 +08:00

316 lines
11 KiB
C++

// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_ARNOLDI_H
#define SPECTRA_ARNOLDI_H
#include <Eigen/Core>
#include <cmath> // std::sqrt
#include <utility> // std::move
#include <stdexcept> // std::invalid_argument
#include "../MatOp/internal/ArnoldiOp.h"
#include "../Util/TypeTraits.h"
#include "../Util/SimpleRandom.h"
#include "UpperHessenbergQR.h"
#include "DoubleShiftQR.h"
namespace Spectra {
// Arnoldi factorization A * V = V * H + f * e'
// A: n x n
// V: n x k
// H: k x k
// f: n x 1
// e: [0, ..., 0, 1]
// V and H are allocated of dimension m, so the maximum value of k is m
template <typename Scalar, typename ArnoldiOpType>
class Arnoldi
{
private:
using Index = Eigen::Index;
using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using MapVec = Eigen::Map<Vector>;
using MapConstMat = Eigen::Map<const Matrix>;
using MapConstVec = Eigen::Map<const Vector>;
protected:
// A very small value, but 1.0 / m_near_0 does not overflow
// ~= 1e-307 for the "double" type
static constexpr Scalar m_near_0 = TypeTraits<Scalar>::min() * Scalar(10);
// The machine precision, ~= 1e-16 for the "double" type
static constexpr Scalar m_eps = TypeTraits<Scalar>::epsilon();
ArnoldiOpType m_op; // Operators for the Arnoldi factorization
const Index m_n; // dimension of A
const Index m_m; // maximum dimension of subspace V
Index m_k; // current dimension of subspace V
Matrix m_fac_V; // V matrix in the Arnoldi factorization
Matrix m_fac_H; // H matrix in the Arnoldi factorization
Vector m_fac_f; // residual in the Arnoldi factorization
Scalar m_beta; // ||f||, B-norm of f
// Given orthonormal basis V (w.r.t. B), find a nonzero vector f such that V'Bf = 0
// With rounding errors, we hope V'B(f/||f||) < eps
// Assume that f has been properly allocated
void expand_basis(MapConstMat& V, const Index seed, Vector& f, Scalar& fnorm, Index& op_counter)
{
using std::sqrt;
Vector v(m_n), Vf(V.cols());
for (Index iter = 0; iter < 5; iter++)
{
// Randomly generate a new vector and orthogonalize it against V
SimpleRandom<Scalar> rng(seed + 123 * iter);
// The first try forces f to be in the range of A
if (iter == 0)
{
rng.random_vec(v);
m_op.perform_op(v.data(), f.data());
op_counter++;
}
else
{
rng.random_vec(f);
}
// f <- f - V * V'Bf, so that f is orthogonal to V in B-norm
m_op.trans_product(V, f, Vf);
f.noalias() -= V * Vf;
// fnorm <- ||f||
fnorm = m_op.norm(f);
// Compute V'Bf again
m_op.trans_product(V, f, Vf);
// Test whether V'B(f/||f||) < eps
Scalar ortho_err = Vf.cwiseAbs().maxCoeff();
// If not, iteratively correct the residual
int count = 0;
while (count < 3 && ortho_err >= m_eps * fnorm)
{
// f <- f - V * Vf
f.noalias() -= V * Vf;
// beta <- ||f||
fnorm = m_op.norm(f);
m_op.trans_product(V, f, Vf);
ortho_err = Vf.cwiseAbs().maxCoeff();
count++;
}
// If the condition is satisfied, simply return
// Otherwise, go to the next iteration and try a new random vector
if (ortho_err < m_eps * fnorm)
return;
}
}
public:
// Copy an ArnoldiOp
Arnoldi(const ArnoldiOpType& op, Index m) :
m_op(op), m_n(op.rows()), m_m(m), m_k(0)
{}
// Move an ArnoldiOp
Arnoldi(ArnoldiOpType&& op, Index m) :
m_op(std::move(op)), m_n(op.rows()), m_m(m), m_k(0)
{}
// Const-reference to internal structures
const Matrix& matrix_V() const { return m_fac_V; }
const Matrix& matrix_H() const { return m_fac_H; }
const Vector& vector_f() const { return m_fac_f; }
Scalar f_norm() const { return m_beta; }
Index subspace_dim() const { return m_k; }
// Initialize with an operator and an initial vector
void init(MapConstVec& v0, Index& op_counter)
{
m_fac_V.resize(m_n, m_m);
m_fac_H.resize(m_m, m_m);
m_fac_f.resize(m_n);
m_fac_H.setZero();
// Verify the initial vector
const Scalar v0norm = m_op.norm(v0);
if (v0norm < m_near_0)
throw std::invalid_argument("initial residual vector cannot be zero");
// Points to the first column of V
MapVec v(m_fac_V.data(), m_n);
// Force v to be in the range of A, i.e., v = A * v0
m_op.perform_op(v0.data(), v.data());
op_counter++;
// Normalize
const Scalar vnorm = m_op.norm(v);
v /= vnorm;
// Compute H and f
Vector w(m_n);
m_op.perform_op(v.data(), w.data());
op_counter++;
m_fac_H(0, 0) = m_op.inner_product(v, w);
m_fac_f.noalias() = w - v * m_fac_H(0, 0);
// In some cases f is zero in exact arithmetics, but due to rounding errors
// it may contain tiny fluctuations. When this happens, we force f to be zero
if (m_fac_f.cwiseAbs().maxCoeff() < m_eps)
{
m_fac_f.setZero();
m_beta = Scalar(0);
}
else
{
m_beta = m_op.norm(m_fac_f);
}
// Indicate that this is a step-1 factorization
m_k = 1;
}
// Arnoldi factorization starting from step-k
virtual void factorize_from(Index from_k, Index to_m, Index& op_counter)
{
using std::sqrt;
if (to_m <= from_k)
return;
if (from_k > m_k)
{
std::string msg = "Arnoldi: from_k (= " + std::to_string(from_k) +
") is larger than the current subspace dimension (= " + std::to_string(m_k) + ")";
throw std::invalid_argument(msg);
}
const Scalar beta_thresh = m_eps * sqrt(Scalar(m_n));
// Pre-allocate vectors
Vector Vf(to_m);
Vector w(m_n);
// Keep the upperleft k x k submatrix of H and set other elements to 0
m_fac_H.rightCols(m_m - from_k).setZero();
m_fac_H.block(from_k, 0, m_m - from_k, from_k).setZero();
for (Index i = from_k; i <= to_m - 1; i++)
{
bool restart = false;
// If beta = 0, then the next V is not full rank
// We need to generate a new residual vector that is orthogonal
// to the current V, which we call a restart
if (m_beta < m_near_0)
{
MapConstMat V(m_fac_V.data(), m_n, i); // The first i columns
expand_basis(V, 2 * i, m_fac_f, m_beta, op_counter);
restart = true;
}
// v <- f / ||f||
m_fac_V.col(i).noalias() = m_fac_f / m_beta; // The (i+1)-th column
// Note that H[i+1, i] equals to the unrestarted beta
m_fac_H(i, i - 1) = restart ? Scalar(0) : m_beta;
// w <- A * v, v = m_fac_V.col(i)
m_op.perform_op(&m_fac_V(0, i), w.data());
op_counter++;
const Index i1 = i + 1;
// First i+1 columns of V
MapConstMat Vs(m_fac_V.data(), m_n, i1);
// h = m_fac_H(0:i, i)
MapVec h(&m_fac_H(0, i), i1);
// h <- V'Bw
m_op.trans_product(Vs, w, h);
// f <- w - V * h
m_fac_f.noalias() = w - Vs * h;
m_beta = m_op.norm(m_fac_f);
if (m_beta > Scalar(0.717) * m_op.norm(h))
continue;
// f/||f|| is going to be the next column of V, so we need to test
// whether V'B(f/||f||) ~= 0
m_op.trans_product(Vs, m_fac_f, Vf.head(i1));
Scalar ortho_err = Vf.head(i1).cwiseAbs().maxCoeff();
// If not, iteratively correct the residual
int count = 0;
while (count < 5 && ortho_err > m_eps * m_beta)
{
// There is an edge case: when beta=||f|| is close to zero, f mostly consists
// of noises of rounding errors, so the test [ortho_err < eps * beta] is very
// likely to fail. In particular, if beta=0, then the test is ensured to fail.
// Hence when this happens, we force f to be zero, and then restart in the
// next iteration.
if (m_beta < beta_thresh)
{
m_fac_f.setZero();
m_beta = Scalar(0);
break;
}
// f <- f - V * Vf
m_fac_f.noalias() -= Vs * Vf.head(i1);
// h <- h + Vf
h.noalias() += Vf.head(i1);
// beta <- ||f||
m_beta = m_op.norm(m_fac_f);
m_op.trans_product(Vs, m_fac_f, Vf.head(i1));
ortho_err = Vf.head(i1).cwiseAbs().maxCoeff();
count++;
}
}
// Indicate that this is a step-m factorization
m_k = to_m;
}
// Apply H -> Q'HQ, where Q is from a double shift QR decomposition
void compress_H(const DoubleShiftQR<Scalar>& decomp)
{
decomp.matrix_QtHQ(m_fac_H);
m_k -= 2;
}
// Apply H -> Q'HQ, where Q is from an upper Hessenberg QR decomposition
void compress_H(const UpperHessenbergQR<Scalar>& decomp)
{
decomp.matrix_QtHQ(m_fac_H);
m_k--;
}
// Apply V -> VQ and compute the new f.
// Should be called after compress_H(), since m_k is updated there.
// Only need to update the first k+1 columns of V
// The first (m - k + i) elements of the i-th column of Q are non-zero,
// and the rest are zero
void compress_V(const Matrix& Q)
{
Matrix Vs(m_n, m_k + 1);
for (Index i = 0; i < m_k; i++)
{
const Index nnz = m_m - m_k + i + 1;
MapConstVec q(&Q(0, i), nnz);
Vs.col(i).noalias() = m_fac_V.leftCols(nnz) * q;
}
Vs.col(m_k).noalias() = m_fac_V * Q.col(m_k);
m_fac_V.leftCols(m_k + 1).noalias() = Vs;
Vector fk = m_fac_f * Q(m_m - 1, m_k - 1) + m_fac_V.col(m_k) * m_fac_H(m_k, m_k - 1);
m_fac_f.swap(fk);
m_beta = m_op.norm(m_fac_f);
}
};
} // namespace Spectra
#endif // SPECTRA_ARNOLDI_H