Files
Aurora/thirdparty/include/Spectra/SymEigsSolver.h
2023-06-02 10:49:02 +08:00

165 lines
5.9 KiB
C++

// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SYM_EIGS_SOLVER_H
#define SPECTRA_SYM_EIGS_SOLVER_H
#include <Eigen/Core>
#include "SymEigsBase.h"
#include "Util/SelectionRule.h"
#include "MatOp/DenseSymMatProd.h"
namespace Spectra {
///
/// \ingroup EigenSolver
///
/// This class implements the eigen solver for real symmetric matrices, i.e.,
/// to solve \f$Ax=\lambda x\f$ where \f$A\f$ is symmetric.
///
/// **Spectra** is designed to calculate a specified number (\f$k\f$)
/// of eigenvalues of a large square matrix (\f$A\f$). Usually \f$k\f$ is much
/// less than the size of the matrix (\f$n\f$), so that only a few eigenvalues
/// and eigenvectors are computed.
///
/// Rather than providing the whole \f$A\f$ matrix, the algorithm only requires
/// the matrix-vector multiplication operation of \f$A\f$. Therefore, users of
/// this solver need to supply a class that computes the result of \f$Av\f$
/// for any given vector \f$v\f$. The name of this class should be given to
/// the template parameter `OpType`, and instance of this class passed to
/// the constructor of SymEigsSolver.
///
/// If the matrix \f$A\f$ is already stored as a matrix object in **Eigen**,
/// for example `Eigen::MatrixXd`, then there is an easy way to construct such a
/// matrix operation class, by using the built-in wrapper class DenseSymMatProd
/// that wraps an existing matrix object in **Eigen**. This is also the
/// default template parameter for SymEigsSolver. For sparse matrices, the
/// wrapper class SparseSymMatProd can be used similarly.
///
/// If the users need to define their own matrix-vector multiplication operation
/// class, it should define a public type `Scalar` to indicate the element type,
/// and implement all the public member functions as in DenseSymMatProd.
///
/// \tparam OpType The name of the matrix operation class. Users could either
/// use the wrapper classes such as DenseSymMatProd and
/// SparseSymMatProd, or define their own that implements the type
/// definition `Scalar` and all the public member functions as in
/// DenseSymMatProd.
///
/// Below is an example that demonstrates the usage of this class.
///
/// \code{.cpp}
/// #include <Eigen/Core>
/// #include <Spectra/SymEigsSolver.h>
/// // <Spectra/MatOp/DenseSymMatProd.h> is implicitly included
/// #include <iostream>
///
/// using namespace Spectra;
///
/// int main()
/// {
/// // We are going to calculate the eigenvalues of M
/// Eigen::MatrixXd A = Eigen::MatrixXd::Random(10, 10);
/// Eigen::MatrixXd M = A + A.transpose();
///
/// // Construct matrix operation object using the wrapper class DenseSymMatProd
/// DenseSymMatProd<double> op(M);
///
/// // Construct eigen solver object, requesting the largest three eigenvalues
/// SymEigsSolver<DenseSymMatProd<double>> eigs(op, 3, 6);
///
/// // Initialize and compute
/// eigs.init();
/// int nconv = eigs.compute(SortRule::LargestAlge);
///
/// // Retrieve results
/// Eigen::VectorXd evalues;
/// if (eigs.info() == CompInfo::Successful)
/// evalues = eigs.eigenvalues();
///
/// std::cout << "Eigenvalues found:\n" << evalues << std::endl;
///
/// return 0;
/// }
/// \endcode
///
/// And here is an example for user-supplied matrix operation class.
///
/// \code{.cpp}
/// #include <Eigen/Core>
/// #include <Spectra/SymEigsSolver.h>
/// #include <iostream>
///
/// using namespace Spectra;
///
/// // M = diag(1, 2, ..., 10)
/// class MyDiagonalTen
/// {
/// public:
/// using Scalar = double; // A typedef named "Scalar" is required
/// int rows() const { return 10; }
/// int cols() const { return 10; }
/// // y_out = M * x_in
/// void perform_op(double *x_in, double *y_out) const
/// {
/// for (int i = 0; i < rows(); i++)
/// {
/// y_out[i] = x_in[i] * (i + 1);
/// }
/// }
/// };
///
/// int main()
/// {
/// MyDiagonalTen op;
/// SymEigsSolver<MyDiagonalTen> eigs(op, 3, 6);
/// eigs.init();
/// eigs.compute(SortRule::LargestAlge);
/// if (eigs.info() == CompInfo::Successful)
/// {
/// Eigen::VectorXd evalues = eigs.eigenvalues();
/// // Will get (10, 9, 8)
/// std::cout << "Eigenvalues found:\n" << evalues << std::endl;
/// }
///
/// return 0;
/// }
/// \endcode
///
template <typename OpType = DenseSymMatProd<double>>
class SymEigsSolver : public SymEigsBase<OpType, IdentityBOp>
{
private:
using Index = Eigen::Index;
public:
///
/// Constructor to create a solver object.
///
/// \param op The matrix operation object that implements
/// the matrix-vector multiplication operation of \f$A\f$:
/// calculating \f$Av\f$ for any vector \f$v\f$. Users could either
/// create the object from the wrapper class such as DenseSymMatProd, or
/// define their own that implements all the public members
/// as in DenseSymMatProd.
/// \param nev Number of eigenvalues requested. This should satisfy \f$1\le nev \le n-1\f$,
/// where \f$n\f$ is the size of matrix.
/// \param ncv Parameter that controls the convergence speed of the algorithm.
/// Typically a larger `ncv` means faster convergence, but it may
/// also result in greater memory use and more matrix operations
/// in each iteration. This parameter must satisfy \f$nev < ncv \le n\f$,
/// and is advised to take \f$ncv \ge 2\cdot nev\f$.
///
SymEigsSolver(OpType& op, Index nev, Index ncv) :
SymEigsBase<OpType, IdentityBOp>(op, IdentityBOp(), nev, ncv)
{}
};
} // namespace Spectra
#endif // SPECTRA_SYM_EIGS_SOLVER_H