Files
Aurora/thirdparty/include/Spectra/MatOp/internal/ArnoldiOp.h
2023-06-02 10:49:02 +08:00

159 lines
3.8 KiB
C++

// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_ARNOLDI_OP_H
#define SPECTRA_ARNOLDI_OP_H
#include <Eigen/Core>
#include <cmath> // std::sqrt
namespace Spectra {
///
/// \ingroup Internals
/// @{
///
///
/// \defgroup Operators Operators
///
/// Different types of operators.
///
///
/// \ingroup Operators
///
/// Operators used in the Arnoldi factorization.
///
template <typename Scalar, typename OpType, typename BOpType>
class ArnoldiOp
{
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
const OpType& m_op;
const BOpType& m_Bop;
mutable Vector m_cache;
public:
ArnoldiOp(const OpType& op, const BOpType& Bop) :
m_op(op), m_Bop(Bop), m_cache(op.rows())
{}
// Move constructor
ArnoldiOp(ArnoldiOp&& other) :
m_op(other.m_op), m_Bop(other.m_Bop)
{
// We emulate the move constructor for Vector using Vector::swap()
m_cache.swap(other.m_cache);
}
inline Index rows() const { return m_op.rows(); }
// In generalized eigenvalue problem Ax=lambda*Bx, define the inner product to be <x, y> = x'By.
// For regular eigenvalue problems, it is the usual inner product <x, y> = x'y
// Compute <x, y> = x'By
// x and y are two vectors
template <typename Arg1, typename Arg2>
Scalar inner_product(const Arg1& x, const Arg2& y) const
{
m_Bop.perform_op(y.data(), m_cache.data());
return x.dot(m_cache);
}
// Compute res = <X, y> = X'By
// X is a matrix, y is a vector, res is a vector
template <typename Arg1, typename Arg2>
void trans_product(const Arg1& x, const Arg2& y, Eigen::Ref<Vector> res) const
{
m_Bop.perform_op(y.data(), m_cache.data());
res.noalias() = x.transpose() * m_cache;
}
// B-norm of a vector, ||x||_B = sqrt(x'Bx)
template <typename Arg>
Scalar norm(const Arg& x) const
{
using std::sqrt;
return sqrt(inner_product<Arg, Arg>(x, x));
}
// The "A" operator to generate the Krylov subspace
inline void perform_op(const Scalar* x_in, Scalar* y_out) const
{
m_op.perform_op(x_in, y_out);
}
};
///
/// \ingroup Operators
///
/// Placeholder for the B-operator when \f$B = I\f$.
///
class IdentityBOp
{};
///
/// \ingroup Operators
///
/// Partial specialization for the case \f$B = I\f$.
///
template <typename Scalar, typename OpType>
class ArnoldiOp<Scalar, OpType, IdentityBOp>
{
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
const OpType& m_op;
public:
ArnoldiOp(const OpType& op, const IdentityBOp& /*Bop*/) :
m_op(op)
{}
inline Index rows() const { return m_op.rows(); }
// Compute <x, y> = x'y
// x and y are two vectors
template <typename Arg1, typename Arg2>
Scalar inner_product(const Arg1& x, const Arg2& y) const
{
return x.dot(y);
}
// Compute res = <X, y> = X'y
// X is a matrix, y is a vector, res is a vector
template <typename Arg1, typename Arg2>
void trans_product(const Arg1& x, const Arg2& y, Eigen::Ref<Vector> res) const
{
res.noalias() = x.transpose() * y;
}
// B-norm of a vector. For regular eigenvalue problems it is simply the L2 norm
template <typename Arg>
Scalar norm(const Arg& x) const
{
return x.norm();
}
// The "A" operator to generate the Krylov subspace
inline void perform_op(const Scalar* x_in, Scalar* y_out) const
{
m_op.perform_op(x_in, y_out);
}
};
///
/// @}
///
} // namespace Spectra
#endif // SPECTRA_ARNOLDI_OP_H