1001 lines
39 KiB
C++
1001 lines
39 KiB
C++
#include <algorithm>
|
||
#include <cstddef>
|
||
#include <iostream>
|
||
#include "Function.h"
|
||
#include "Function2D.h"
|
||
#include "Function1D.h"
|
||
//必须在Eigen之前
|
||
#include "AuroraDefs.h"
|
||
#include "Function3D.h"
|
||
#include "Matrix.h"
|
||
|
||
#include <Eigen/Core>
|
||
#include <Eigen/Eigen>
|
||
#include <Eigen/Dense>
|
||
#include <iterator>
|
||
#include <utility>
|
||
|
||
using namespace Aurora;
|
||
|
||
double Aurora::immse(const Aurora::Matrix &aImageA, const Aurora::Matrix &aImageB) {
|
||
if (aImageA.getDims()!=2|| aImageB.getDims()!=2){
|
||
std::cerr<<"Fail!immse args must all 2d matrix!";
|
||
return 0.0;
|
||
}
|
||
if (!aImageB.compareShape(aImageA)){
|
||
std::cerr<<"Fail!immse args must be same shape!";
|
||
return 0.0;
|
||
}
|
||
if (aImageA.getValueType()!=Normal || aImageB.getValueType() != Normal) {
|
||
std::cerr << "Fail!immse args must be normal value type!";
|
||
return 0.0;
|
||
}
|
||
int size = aImageA.getDataSize();
|
||
auto temp = malloc(size);
|
||
vdSub(size, aImageA.getData(), aImageB.getData(), temp);
|
||
vdSqr(size, temp, temp);
|
||
double result = cblas_dasum(size, temp, 1) / (double) size;
|
||
free(temp);
|
||
return result;
|
||
}
|
||
|
||
Aurora::Matrix Aurora::inv(const Aurora::Matrix &aMatrix) {
|
||
if (aMatrix.getDims() != 2) {
|
||
std::cerr << "Fail!inv args must be 2d matrix!";
|
||
return aMatrix;
|
||
}
|
||
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
|
||
std::cerr << "Fail!inv args must be square matrix!";
|
||
return aMatrix;
|
||
}
|
||
if (aMatrix.getValueType() != Normal) {
|
||
std::cerr << "Fail!inv args must be normal value type!";
|
||
return aMatrix;
|
||
}
|
||
int size = aMatrix.getDataSize();
|
||
int *ipiv = new int[aMatrix.getDimSize(0)];
|
||
auto result = malloc(size);
|
||
cblas_dcopy(size,aMatrix.getData(), 1,result, 1);
|
||
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
|
||
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
|
||
delete[] ipiv;
|
||
return Matrix::New(result,aMatrix);
|
||
}
|
||
|
||
Aurora::Matrix Aurora::inv(Aurora::Matrix&& aMatrix) {
|
||
if (aMatrix.getDims() != 2) {
|
||
std::cerr << "Fail!inv args must be 2d matrix!";
|
||
return aMatrix;
|
||
}
|
||
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
|
||
std::cerr << "Fail!inv args must be square matrix!";
|
||
return aMatrix;
|
||
}
|
||
if (aMatrix.getValueType() != Normal) {
|
||
std::cerr << "Fail!inv args must be normal value type!";
|
||
return aMatrix;
|
||
}
|
||
int *ipiv = new int[aMatrix.getDimSize(0)];
|
||
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
|
||
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
|
||
delete[] ipiv;
|
||
return aMatrix;
|
||
}
|
||
|
||
Matrix Aurora::interp2(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
|
||
{
|
||
if (aV.getDims() != 2)
|
||
{
|
||
return Matrix();
|
||
}
|
||
|
||
if (aX1.getDimSize(0) != aY1.getDimSize(0))
|
||
{
|
||
return Matrix();
|
||
}
|
||
|
||
int columnNum = aV.getDimSize(1);
|
||
int rowNum = aV.getDimSize(0);
|
||
|
||
if(aX.getDimSize(0) != columnNum || aY.getDimSize(0) != rowNum)
|
||
{
|
||
return Matrix();
|
||
}
|
||
|
||
int nx1 = aX1.getDimSize(0);
|
||
std::shared_ptr<double> resultData = std::shared_ptr<double>(Aurora::malloc(nx1), Aurora::free);
|
||
for (int i = 0; i < nx1; ++i)
|
||
{
|
||
std::shared_ptr<double> xResultData = std::shared_ptr<double>(Aurora::malloc(columnNum), Aurora::free);
|
||
for(int j =0; j < columnNum; ++j)
|
||
{
|
||
xResultData.get()[j] = interp1(aY,aV($,j).toMatrix(),aY1(i).toMatrix(),aMethod).getData()[0];
|
||
}
|
||
Matrix xResult(xResultData,std::vector<int>{columnNum});
|
||
resultData.get()[i] = interp1(aX,xResult,aX1(i).toMatrix(),aMethod).getData()[0];
|
||
}
|
||
return Matrix(resultData,std::vector<int>{nx1});
|
||
}
|
||
|
||
Matrix Aurora::interpn(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
|
||
{
|
||
return Aurora::interp2(aY,aX,aV,aY1,aX1,aMethod);
|
||
}
|
||
|
||
Matrix Aurora::std(const Matrix &aMatrix) {
|
||
if (aMatrix.getDimSize(2) > 1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "std() not support 3D data!" : "std() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
|
||
Matrix src = aMatrix.isComplex() ? Aurora::abs(aMatrix) : aMatrix.deepCopy();
|
||
int calc_size = src.getDimSize(0) == 1 ? src.getDimSize(1) : src.getDimSize(0);
|
||
int col = src.getDimSize(0) == 1?1:src.getDimSize(1) ;
|
||
auto std = Aurora::malloc(col);
|
||
auto meanM = Aurora::mean(aMatrix);
|
||
for (int i = 0; i < col; ++i) {
|
||
double *p = src.getData() + i * calc_size;
|
||
|
||
double mean = meanM[i];
|
||
vdSubI(calc_size, p, 1, &mean, 0, p, 1);
|
||
vdSqr(calc_size, p, p);
|
||
std[i] = cblas_dasum(calc_size, p, 1) / (calc_size - 1);
|
||
}
|
||
vdSqrt(col, std, std);
|
||
return Matrix::New(std, 1, col, aMatrix.getDimSize(2));
|
||
}
|
||
|
||
Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction, long& rowIdx, long& colIdx) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//针对向量行等于列
|
||
if (direction == Column && aMatrix.getDimSize(0)==1){
|
||
direction = All;
|
||
}
|
||
switch (direction)
|
||
{
|
||
case All: {
|
||
Eigen::Map<Eigen::MatrixXd> retV(aMatrix.getData(), aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||
double *ret = malloc(1);
|
||
ret[0] = retV.array().minCoeff(&rowIdx, &colIdx);
|
||
return Matrix::New(ret, 1);
|
||
}
|
||
case Row:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * ret = malloc(aMatrix.getDimSize(0));
|
||
|
||
if (aMatrix.getDimSize(0) == 1){
|
||
ret[0] = srcMatrix.topRows(0).minCoeff(&rowIdx, &colIdx);
|
||
}
|
||
else{
|
||
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,aMatrix.getDimSize(0),1);
|
||
retMatrix = srcMatrix.rowwise().minCoeff();
|
||
}
|
||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||
}
|
||
case Column:
|
||
default:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * ret = malloc(aMatrix.getDimSize(1));
|
||
|
||
if (aMatrix.getDimSize(1) == 1){
|
||
ret[0] = srcMatrix.col(0).minCoeff(&rowIdx, &colIdx);
|
||
}
|
||
else {
|
||
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,1,aMatrix.getDimSize(1));
|
||
retMatrix = srcMatrix.colwise().minCoeff();
|
||
}
|
||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||
}
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) {
|
||
long a,b;
|
||
return min(aMatrix,direction,a,b);
|
||
}
|
||
|
||
Matrix Aurora::min(const Matrix &aMatrix, const Matrix &aOther) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
if (aOther.getDimSize(2)>1 || aOther.isComplex()) {
|
||
std::cerr
|
||
<< (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//same shape
|
||
if (aMatrix.compareShape(aOther)){
|
||
double* output = malloc(aMatrix.getDataSize());
|
||
vdFminI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1);
|
||
return Matrix::New(output,aMatrix);
|
||
}
|
||
// one is scalar
|
||
else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){
|
||
double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0];
|
||
auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix;
|
||
double* output = malloc(matrix.getDataSize());
|
||
vdFminI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1);
|
||
return Matrix::New(output,matrix);
|
||
}
|
||
else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) {
|
||
if (aMatrix.getDimSize(1) == 1){
|
||
double* output = malloc(aOther.getDataSize());
|
||
for (int i = 0; i < aOther.getDimSize(1); ++i) {
|
||
vdFminI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1,
|
||
output + aOther.getDimSize(0) * i, 1);
|
||
}
|
||
return Matrix::New(output,aOther);
|
||
}
|
||
else{
|
||
double* output = malloc(aMatrix.getDataSize());
|
||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
||
vdFminI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0),
|
||
output + i, aOther.getDimSize(0));
|
||
}
|
||
return Matrix::New(output,aMatrix);
|
||
}
|
||
}
|
||
else{
|
||
std::cerr
|
||
<< "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]"
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction) {
|
||
long a,b;
|
||
return max(aMatrix,direction,a,b);
|
||
}
|
||
|
||
Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction, long& rowIdx, long& colIdx) {
|
||
if (aMatrix.getDimSize(2)>1) {
|
||
std::cerr
|
||
<< "max() not support 3D data!"
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
auto calcMatrix = aMatrix.isComplex()?abs(aMatrix):aMatrix;
|
||
|
||
//针对向量行等于列
|
||
if (direction == Column && calcMatrix.getDimSize(0)==1){
|
||
direction = All;
|
||
}
|
||
switch (direction)
|
||
{
|
||
case All:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> retV(calcMatrix.getData(), calcMatrix.getDimSize(0), calcMatrix.getDimSize(1));
|
||
double *ret = malloc(1);
|
||
ret[0] = retV.array().maxCoeff(&rowIdx, &colIdx);
|
||
return Matrix::New(ret,1);
|
||
}
|
||
case Row:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcMatrix(calcMatrix.getData(),calcMatrix.getDimSize(0),calcMatrix.getDimSize(1));
|
||
double * ret = malloc(calcMatrix.getDimSize(0));
|
||
if (calcMatrix.getDimSize(0) == 1){
|
||
ret[0] = srcMatrix.topRows(0).maxCoeff(&rowIdx, &colIdx);
|
||
}
|
||
else{
|
||
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,calcMatrix.getDimSize(0),1);
|
||
retMatrix = srcMatrix.rowwise().maxCoeff();
|
||
}
|
||
return Matrix::New(ret,calcMatrix.getDimSize(0),1);
|
||
}
|
||
case Column:
|
||
default:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcMatrix(calcMatrix.getData(),calcMatrix.getDimSize(0),calcMatrix.getDimSize(1));
|
||
double * ret = malloc(calcMatrix.getDimSize(1));
|
||
if (calcMatrix.getDimSize(1) == 1){
|
||
ret[0] = srcMatrix.col(0).maxCoeff(&rowIdx, &colIdx);
|
||
}
|
||
else {
|
||
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,1,calcMatrix.getDimSize(1));
|
||
retMatrix = srcMatrix.colwise().maxCoeff();
|
||
}
|
||
return Matrix::New(ret,1,calcMatrix.getDimSize(1));
|
||
}
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::max(const Matrix &aMatrix, const Matrix &aOther) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
if (aOther.getDimSize(2)>1 || aOther.isComplex()) {
|
||
std::cerr
|
||
<< (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//same shape
|
||
if (aMatrix.compareShape(aOther)){
|
||
double* output = malloc(aMatrix.getDataSize());
|
||
vdFmaxI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1);
|
||
return Matrix::New(output,aMatrix);
|
||
}
|
||
// one is scalar
|
||
else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){
|
||
double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0];
|
||
auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix;
|
||
double* output = malloc(matrix.getDataSize());
|
||
vdFmaxI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1);
|
||
return Matrix::New(output,matrix);
|
||
}
|
||
else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) {
|
||
if (aMatrix.getDimSize(1) == 1){
|
||
double* output = malloc(aOther.getDataSize());
|
||
for (int i = 0; i < aOther.getDimSize(1); ++i) {
|
||
vdFmaxI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1,
|
||
output + aOther.getDimSize(0) * i, 1);
|
||
}
|
||
return Matrix::New(output,aOther);
|
||
}
|
||
else{
|
||
double* output = malloc(aMatrix.getDataSize());
|
||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
||
vdFmaxI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0),
|
||
output + i, aOther.getDimSize(0));
|
||
}
|
||
return Matrix::New(output,aMatrix);
|
||
}
|
||
}
|
||
else{
|
||
std::cerr
|
||
<< "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]"
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::max(const Matrix &aMatrix, const double aValue){
|
||
double *output = malloc(1);
|
||
output[0] = aValue;
|
||
return max(aMatrix,Matrix::New(output, 1,1,1));
|
||
}
|
||
|
||
Matrix Aurora::sum(const Matrix &aMatrix, FunctionDirection direction) {
|
||
if (aMatrix.getDimSize(2)>1 ) {
|
||
std::cerr<< "sum() not support 3D data!"
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//针对向量行等于列
|
||
if (direction == Column && aMatrix.getDimSize(0)==1){
|
||
direction = Row;
|
||
}
|
||
if (aMatrix.isComplex()){
|
||
switch (direction)
|
||
{
|
||
case All:
|
||
{
|
||
Eigen::Map<Eigen::VectorXcd> srcV((std::complex<double>*)aMatrix.getData(),aMatrix.getDataSize());
|
||
std::complex<double>* ret = (std::complex<double>*)malloc(1,true);
|
||
ret[0] = srcV.array().sum();
|
||
return Matrix::New((double*)ret,1,1,1,Complex);
|
||
}
|
||
case Row:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXcd> srcM((std::complex<double>*)aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
std::complex<double> * ret = (std::complex<double>*)malloc(aMatrix.getDimSize(0),true);
|
||
Eigen::Map<Eigen::VectorXcd> retV(ret,aMatrix.getDimSize(0));
|
||
retV = srcM.rowwise().sum();
|
||
return Matrix::New((double*)ret,aMatrix.getDimSize(0),1,1,Complex);
|
||
}
|
||
case Column:
|
||
default:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXcd> srcM((std::complex<double>*)aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
std::complex<double>* ret = (std::complex<double>*)malloc(aMatrix.getDimSize(1),true);
|
||
Eigen::Map<Eigen::VectorXcd> retV(ret,aMatrix.getDimSize(1));
|
||
retV = srcM.colwise().sum();
|
||
return Matrix::New((double*)ret,1,aMatrix.getDimSize(1),1,Complex);
|
||
}
|
||
}
|
||
}
|
||
else{
|
||
switch (direction)
|
||
{
|
||
case All:
|
||
{
|
||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||
double * ret = malloc(1);
|
||
ret[0] = srcV.array().sum();
|
||
return Matrix::New(ret,1);
|
||
}
|
||
case Row:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * ret = malloc(aMatrix.getDimSize(0));
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||
retV = srcM.rowwise().sum();
|
||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||
}
|
||
case Column:
|
||
default:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * ret = malloc(aMatrix.getDimSize(1));
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
|
||
retV = srcM.colwise().sum();
|
||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::mean(const Matrix &aMatrix, FunctionDirection direction, bool aIncludeNan) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "sum() not support 3D data!" : "sum() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//针对向量行等于列
|
||
if (direction == Column && aMatrix.getDimSize(0)==1){
|
||
direction = All;
|
||
}
|
||
if (aIncludeNan){
|
||
switch (direction)
|
||
{
|
||
case All:
|
||
{
|
||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||
double * ret = malloc(64);
|
||
ret[0] = srcV.array().mean();
|
||
return Matrix::New(ret,1);
|
||
}
|
||
case Row:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * ret = malloc(aMatrix.getDimSize(0));
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||
retV = srcM.rowwise().mean();
|
||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||
}
|
||
case Column:
|
||
default:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * ret = malloc(aMatrix.getDimSize(1));
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
|
||
retV = srcM.colwise().mean();
|
||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||
}
|
||
}
|
||
}
|
||
else{
|
||
switch (direction)
|
||
{
|
||
case All:
|
||
{
|
||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||
double * retVd = malloc(aMatrix.getDataSize());
|
||
Eigen::Map<Eigen::VectorXd> retV(retVd,aMatrix.getDataSize());
|
||
Eigen::VectorXd ones = Eigen::VectorXd(aMatrix.getDataSize());
|
||
ones.setConstant(1.0);
|
||
retV = srcV.array().isNaN().select(0.0,ones);
|
||
int count = retV.sum();
|
||
if (count == 0){
|
||
free(retVd);
|
||
double *ret = malloc(1);
|
||
ret[0]=0;
|
||
return Matrix::New(ret,1);
|
||
}
|
||
else {
|
||
double *ret = malloc(1);
|
||
retV = srcV.array().isNaN().select(0.0,srcV);
|
||
ret[0] = retV.sum() / count;
|
||
free(retVd);
|
||
return Matrix::New(ret, 1);
|
||
}
|
||
}
|
||
case Row:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * retMd = malloc(aMatrix.getDataSize());
|
||
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||
zeros.setConstant(0.0);
|
||
retM = srcM.array().isNaN().select(zeros,1.0);
|
||
Eigen::VectorXd countM = retM.rowwise().sum();
|
||
countM = (countM.array()==0.0).select(1.0,countM);
|
||
retM = srcM.array().isNaN().select(0.0,srcM);
|
||
double * ret = malloc(aMatrix.getDimSize(0));
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||
retV = retM.rowwise().sum();
|
||
retV =retV.array()/countM.array();
|
||
free(retMd);
|
||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||
}
|
||
case Column:
|
||
default:
|
||
{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
double * retMd = malloc(aMatrix.getDataSize());
|
||
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||
zeros.setConstant(0.0);
|
||
retM = srcM.array().isNaN().select(zeros,1.0);
|
||
Eigen::VectorXd countM = retM.colwise().sum();
|
||
countM = (countM.array()==0).select(1.0,countM);
|
||
retM = srcM.array().isNaN().select(0.0,srcM);
|
||
double * ret = malloc(aMatrix.getDimSize(1));
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
|
||
retV = retM.colwise().sum();
|
||
retV = retV.array()/countM.array();
|
||
free(retMd);
|
||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::sort(const Matrix &aMatrix, FunctionDirection direction) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "sort() not support 3D data!" : "sort() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
return sort(std::forward<Matrix &&>(aMatrix.deepCopy()), direction);
|
||
}
|
||
|
||
Matrix Aurora::sort(Matrix &&aMatrix, FunctionDirection direction) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "sort() not support 3D data!" : "sort() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//针对向量行等于列
|
||
if (aMatrix.getDimSize(0)==1){
|
||
direction = Row;
|
||
}
|
||
if (direction == Column)
|
||
{
|
||
if (aMatrix.getDimSize(0)>=100000){
|
||
#pragma omp parallel for
|
||
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData()+i*aMatrix.getDimSize(0),aMatrix.getDimSize(0));
|
||
std::sort(srcV.array().begin(),srcV.array().end());
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData()+i*aMatrix.getDimSize(0),aMatrix.getDimSize(0));
|
||
std::sort(srcV.array().begin(),srcV.array().end());
|
||
}
|
||
}
|
||
}
|
||
else if(direction == Row){
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||
if (aMatrix.getDimSize(1)>=100000){
|
||
#pragma omp parallel for
|
||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
||
std::sort(srcM.row(i).array().begin(),srcM.row(i).array().end());
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
||
std::sort(srcM.row(i).array().begin(),srcM.row(i).array().end());
|
||
}
|
||
}
|
||
}
|
||
else{
|
||
std::cerr<<"sort not support all mode!"<<std::endl;
|
||
}
|
||
return aMatrix;
|
||
}
|
||
|
||
Matrix Aurora::sortrows(const Matrix &aMatrix, Matrix* indexMatrix) {
|
||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "sortrows() not support 3D data!" : "sortrows() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
auto result = aMatrix.deepCopy();
|
||
int rows = aMatrix.getDimSize(0);
|
||
std::vector<std::pair<double,int>> col;
|
||
std::vector<std::pair<double,int>>::iterator last;
|
||
for (size_t j = 0; j < rows; j++)
|
||
{
|
||
col.push_back(std::make_pair(aMatrix[j], j));
|
||
}
|
||
std::sort(col.begin(), col.end(),[](auto a,auto b){
|
||
return a.first < b.first;
|
||
});
|
||
last = col.begin();
|
||
//按列里边
|
||
for (size_t i = 1; i < aMatrix.getDimSize(1); i++)
|
||
{
|
||
int beginIdx = 0;
|
||
bool sameFlag = false;
|
||
//遍历已排序数据查找相同值
|
||
while(beginIdx < col.size()){
|
||
for (int iterIdx = beginIdx+1; iterIdx <= col.size(); iterIdx++)
|
||
{
|
||
//查找下一个不同值
|
||
if(col[iterIdx].first == col[iterIdx-1].first && iterIdx!=col.size()){
|
||
//存在相同值
|
||
sameFlag = true;
|
||
continue;
|
||
}
|
||
//判断是否需要对相同值进行排序,iterIdx-beginIdx==1时代表正常的不同值
|
||
if (iterIdx-beginIdx != 1){
|
||
//按照新的一列对相同值排序
|
||
std::sort(col.begin()+beginIdx, col.begin()+iterIdx,[&aMatrix,i,rows](auto a,auto b){
|
||
return aMatrix[a.second+i*rows] < aMatrix[b.second+i*rows];
|
||
});
|
||
}
|
||
beginIdx = iterIdx;
|
||
}
|
||
//未发现不同值 break 循环
|
||
if(!sameFlag) break;
|
||
}
|
||
//未发现不同值 break 循环
|
||
if(!sameFlag) break;
|
||
//按照新一列刷新数组值
|
||
std::for_each(col.begin(), col.end() , [&aMatrix,i,rows](std::pair<double,int>& a){return a.first=aMatrix[a.second+i*rows];});
|
||
}
|
||
int i=0;
|
||
(*indexMatrix) = zeros(aMatrix.getDimSize(0),1);
|
||
std::for_each(col.begin(),col.end(), [&aMatrix,&result,&i,indexMatrix](std::pair<double,int>& a){
|
||
result(i,$) = aMatrix(a.second,$);
|
||
(*indexMatrix)[i] = a.second;
|
||
i++;
|
||
});
|
||
return result;
|
||
}
|
||
|
||
Matrix Aurora::median(const Matrix &aMatrix) {
|
||
if (aMatrix.getDimSize(2) > 1 || aMatrix.isComplex()) {
|
||
std::cerr
|
||
<< (aMatrix.getDimSize(2) > 1 ? "median() not support 3D data!"
|
||
: "median() not support complex value type!")
|
||
<< std::endl;
|
||
return Matrix();
|
||
}
|
||
bool horVector = aMatrix.getDimSize(0)==1;
|
||
Matrix sorted = horVector?sort(aMatrix,Row):sort(aMatrix);
|
||
int rows = horVector?sorted.getDimSize(1):sorted.getDimSize(0);
|
||
int cols = horVector?sorted.getDimSize(0):sorted.getDimSize(1);
|
||
Eigen::Map<Eigen::MatrixXd> srcM(sorted.getData(),rows,cols);
|
||
bool flag = rows % 2 == 1;
|
||
double* ret = malloc(cols);
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,cols);
|
||
if (flag) {
|
||
retV = srcM.row(rows/2);
|
||
return Matrix::New(ret,1,cols);
|
||
} else {
|
||
retV = (srcM.row(rows/2-1).array()+srcM.row(rows/2).array())/2;
|
||
return Matrix::New(ret,1,cols);
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::fft(const Matrix &aMatrix, long aFFTSize) {
|
||
double *output = nullptr;
|
||
mkl_free_buffers();
|
||
MKL_LONG rowSize = (aFFTSize>0)?aFFTSize:aMatrix.getDimSize(0);
|
||
//实际需要copy赋值的非0值
|
||
MKL_LONG needCopySize = (rowSize<aMatrix.getDimSize(0))?rowSize:aMatrix.getDimSize(0);
|
||
MKL_LONG bufferSize = rowSize*aMatrix.getDimSize(1);
|
||
output = malloc(bufferSize, true);
|
||
double zero = 0.0;
|
||
//先全部置为0
|
||
cblas_dcopy(bufferSize*2, &zero, 0, output, 1);
|
||
if (!aMatrix.isComplex()) {
|
||
//按列copy原值
|
||
for (int i = 0 ; i < aMatrix.getDimSize(1); ++i) {
|
||
cblas_dcopy(needCopySize, aMatrix.getData()+i*aMatrix.getDimSize(0), 1, output+i*rowSize*2, 2);
|
||
}
|
||
} else {
|
||
//按列copy原值
|
||
for (int i = 0 ; i < aMatrix.getDimSize(1); ++i) {
|
||
cblas_zcopy(needCopySize, aMatrix.getData()+i*aMatrix.getDimSize(0)*2, 1, output+i*rowSize*2, 1);
|
||
}
|
||
}
|
||
|
||
DFTI_DESCRIPTOR_HANDLE my_desc_handle = NULL;
|
||
MKL_LONG status;
|
||
|
||
//创建 Descriptor, 精度 double , 输入类型实数, 维度1
|
||
status = DftiCreateDescriptor(&my_desc_handle, DFTI_DOUBLE, DFTI_COMPLEX, 1, rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//通过 setValue 配置Descriptor
|
||
//使用单独的输出数据缓存
|
||
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_INPLACE);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//每个傅里叶变换的输入距离
|
||
status = DftiSetValue(my_desc_handle,DFTI_INPUT_DISTANCE,rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//每个傅里叶变换的输出距离
|
||
status = DftiSetValue(my_desc_handle,DFTI_OUTPUT_DISTANCE,rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//傅里叶变换的数量
|
||
status = DftiSetValue(my_desc_handle,DFTI_NUMBER_OF_TRANSFORMS,aMatrix.getDimSize(1));
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//提交 修改配置后的Descriptor(实际上会进行FFT的计算初始化)
|
||
status = DftiCommitDescriptor(my_desc_handle);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//执行计算
|
||
status = DftiComputeForward(my_desc_handle, output, output);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//释放资源
|
||
status = DftiFreeDescriptor(&my_desc_handle);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
mkl_free_buffers();
|
||
return Matrix::New(output, rowSize, aMatrix.getDimSize(1), aMatrix.getDimSize(2), Complex);
|
||
error:
|
||
std::cerr<<"FFT fail, error message:"<<DftiErrorMessage(status)<<std::endl;
|
||
return Matrix();
|
||
}
|
||
|
||
Matrix Aurora::ifft(const Matrix &aMatrix, long aFFTSize ) {
|
||
if (!aMatrix.isComplex()){
|
||
std::cerr<<"ifft input must be complex value"<<std::endl;
|
||
return Matrix();
|
||
}
|
||
DFTI_DESCRIPTOR_HANDLE my_desc_handle = NULL;
|
||
// mkl_free_buffers();
|
||
// auto output = malloc(aMatrix.getDataSize(),true);
|
||
MKL_LONG status;
|
||
double *output = nullptr;
|
||
mkl_free_buffers();
|
||
MKL_LONG rowSize = (aFFTSize>0)?aFFTSize:aMatrix.getDimSize(0);
|
||
//实际需要copy赋值的非0值
|
||
MKL_LONG needCopySize = (rowSize<aMatrix.getDimSize(0))?rowSize:aMatrix.getDimSize(0);
|
||
MKL_LONG bufferSize = rowSize*aMatrix.getDimSize(1);
|
||
output = malloc(bufferSize, true);
|
||
double zero = 0.0;
|
||
//先全部置为0
|
||
cblas_dcopy(bufferSize*2, &zero, 0, output, 1);
|
||
if (!aMatrix.isComplex()) {
|
||
//按列copy原值
|
||
for (int i = 0 ; i < aMatrix.getDimSize(1); ++i) {
|
||
cblas_dcopy(needCopySize, aMatrix.getData()+i*aMatrix.getDimSize(0), 1, output+i*rowSize*2, 2);
|
||
}
|
||
} else {
|
||
//按列copy原值
|
||
for (int i = 0 ; i < aMatrix.getDimSize(1); ++i) {
|
||
cblas_zcopy(needCopySize, aMatrix.getData()+i*aMatrix.getDimSize(0)*2, 1, output+i*rowSize*2, 1);
|
||
}
|
||
}
|
||
//创建 Descriptor, 精度 double , 输入类型实数, 维度1
|
||
int size = aMatrix.getDimSize(0);
|
||
status = DftiCreateDescriptor(&my_desc_handle, DFTI_DOUBLE, DFTI_COMPLEX, 1, rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
//通过 setValue 配置Descriptor
|
||
//使用单独的输出数据缓存
|
||
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//设置DFTI_BACKWARD_SCALE !!!很关键,不然值不对
|
||
status = DftiSetValue(my_desc_handle, DFTI_BACKWARD_SCALE, 1.0f / rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
status = DftiSetValue(my_desc_handle,DFTI_INPUT_DISTANCE,rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//每个傅里叶变换的输出距离
|
||
status = DftiSetValue(my_desc_handle,DFTI_OUTPUT_DISTANCE,rowSize);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//傅里叶变换的数量
|
||
status = DftiSetValue(my_desc_handle,DFTI_NUMBER_OF_TRANSFORMS,aMatrix.getDimSize(1));
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
status = DftiCommitDescriptor(my_desc_handle);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//提交 修改配置后的Descriptor(实际上会进行FFT的计算初始化)
|
||
status = DftiCommitDescriptor(my_desc_handle);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
|
||
//执行计算
|
||
status = DftiComputeBackward(my_desc_handle, aMatrix.getData(), output);
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
//释放资源
|
||
status = DftiFreeDescriptor(&my_desc_handle);
|
||
mkl_free_buffers();
|
||
if (status != DFTI_NO_ERROR) goto error;
|
||
{
|
||
return Matrix::New(output, rowSize, aMatrix.getDimSize(1), aMatrix.getDimSize(2), Complex);
|
||
}
|
||
error:
|
||
std::cerr<<"FFT fail, error message:"<<DftiErrorMessage(status)<<std::endl;
|
||
return Matrix();
|
||
}
|
||
|
||
Matrix Aurora::ifft_symmetric(const Matrix &aMatrix,long length)
|
||
{
|
||
if(!aMatrix.isVector()){
|
||
std::cerr<<"ifft_symmetric only support vector!"<<std::endl;
|
||
return Matrix();
|
||
}
|
||
int matrixLength = aMatrix.getDataSize();
|
||
int resultHalfLength = (int)std::ceil(((double)length*0.5));
|
||
int copyLength = resultHalfLength<matrixLength?resultHalfLength:matrixLength;
|
||
double* calcData = malloc(length,true);
|
||
double zero = 0.0;
|
||
//所有数据统一置0
|
||
cblas_dcopy(length*2,&zero,0,calcData,1);
|
||
//copy前半段数据
|
||
cblas_zcopy(copyLength,aMatrix.getData(),1,calcData,1);
|
||
//copy后半段数据,跳过index 0的值,并设置虚部共轭
|
||
vdAddI(copyLength-1,&zero,0,(aMatrix.getData()+2),2,(calcData+(length-1)*2),-2);
|
||
vdSubI(copyLength-1,&zero,0,(aMatrix.getData()+2+1),2,(calcData+(length-1)*2+1),-2);
|
||
|
||
return real(ifft(Matrix::New(calcData,length,1,1,Complex)));
|
||
}
|
||
|
||
void Aurora::fftshift(Matrix &aMatrix){
|
||
int backwardLength = aMatrix.getDimSize(0)/2;
|
||
if (aMatrix.getDimSize(0)%2!=0)++backwardLength;
|
||
int forwardLength = aMatrix.getDimSize(0) - backwardLength;
|
||
double* buffer = malloc(forwardLength,true);
|
||
int valueStep = aMatrix.isComplex()?2:1;
|
||
for (int i = 0; i<aMatrix.getDimSize(1); ++i) {
|
||
double* dataPtr = aMatrix.getData()+aMatrix.getDimSize(0)*i*valueStep;
|
||
cblas_dcopy(forwardLength*valueStep, dataPtr+backwardLength*valueStep, 1, buffer, 1);
|
||
cblas_dcopy(backwardLength*valueStep, dataPtr, 1, dataPtr+forwardLength*valueStep, 1);
|
||
cblas_dcopy(forwardLength*valueStep, buffer, 1, dataPtr, 1);
|
||
}
|
||
Aurora::free(buffer);
|
||
}
|
||
|
||
void Aurora::ifftshift(Matrix &aMatrix){
|
||
int forwardLength= aMatrix.getDimSize(0)/2;
|
||
if (aMatrix.getDimSize(0)%2!=0)++forwardLength;
|
||
int backwardLength = aMatrix.getDimSize(0) - forwardLength;
|
||
double* buffer = malloc(forwardLength,true);
|
||
int valueStep = aMatrix.isComplex()?2:1;
|
||
for (int i = 0; i<aMatrix.getDimSize(1); ++i) {
|
||
double* dataPtr = aMatrix.getData()+aMatrix.getDimSize(0)*i*valueStep;
|
||
cblas_dcopy(forwardLength*valueStep, dataPtr+backwardLength*valueStep, 1, buffer, 1);
|
||
cblas_dcopy(backwardLength*valueStep, dataPtr, 1, dataPtr+forwardLength*valueStep, 1);
|
||
cblas_dcopy(forwardLength*valueStep, buffer, 1, dataPtr, 1);
|
||
}
|
||
Aurora::free(buffer);
|
||
}
|
||
|
||
Matrix Aurora::hilbert(const Matrix &aMatrix) {
|
||
auto x = fft(aMatrix);
|
||
auto h = malloc(aMatrix.getDimSize(0));
|
||
auto two = 2.0;
|
||
auto zero = 0.0;
|
||
cblas_dcopy(aMatrix.getDimSize(0), &zero, 0, h, 1);
|
||
cblas_dcopy(aMatrix.getDimSize(0) / 2, &two, 0, h, 1);
|
||
h[aMatrix.getDimSize(0) / 2] = ((aMatrix.getDimSize(0) << 31) >> 31) ? 2.0 : 1.0;
|
||
h[0] = 1.0;
|
||
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
||
auto p = (double *)(x.getData() + aMatrix.getDimSize(0)* i*2);
|
||
vdMulI(aMatrix.getDimSize(0), p, 2, h, 1, p, 2);
|
||
vdMulI(aMatrix.getDimSize(0), p + 1, 2, h, 1, p + 1, 2);
|
||
}
|
||
auto result = ifft( x);
|
||
free(h);
|
||
return result;
|
||
}
|
||
|
||
Matrix Aurora::prod(const Matrix &aMatrix) {
|
||
if (aMatrix.getDimSize(2) > 1 ) {
|
||
std::cerr<< "prod() not support 3D data!"<< std::endl;
|
||
return Matrix();
|
||
}
|
||
int row = aMatrix.getDimSize(0)==1?aMatrix.getDimSize(1):aMatrix.getDimSize(0);
|
||
int col = aMatrix.getDimSize(0)==1?1:aMatrix.getDimSize(1);
|
||
if (aMatrix.isComplex()){
|
||
Eigen::Map<Eigen::MatrixXcd> srcM((std::complex<double>*)aMatrix.getData(),row,col);
|
||
auto ret = malloc(col,true);
|
||
Eigen::Map<Eigen::VectorXcd> retV((std::complex<double>*)ret,col);
|
||
retV = srcM.colwise().prod();
|
||
return Matrix::New(ret,1,col,1,Complex);
|
||
}
|
||
else{
|
||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),row,col);
|
||
auto ret = malloc(col);
|
||
Eigen::Map<Eigen::VectorXd> retV(ret,col);
|
||
retV = srcM.colwise().prod();
|
||
return Matrix::New(ret,1,col);
|
||
}
|
||
}
|
||
|
||
Matrix Aurora::dot(const Matrix &aMatrix,const Matrix& aOther,FunctionDirection direction ) {
|
||
if ( direction == All){
|
||
std::cerr<< "dot() not support 3D data!"<< std::endl;
|
||
return Matrix();
|
||
}
|
||
if (!aMatrix.compareShape(aOther)){
|
||
std::cerr<< "dot() matrix must be same shape!"<< std::endl;
|
||
return Matrix();
|
||
}
|
||
//针对向量行等于列
|
||
if (direction == Column && aMatrix.getDimSize(0)==1){
|
||
direction = Row;
|
||
}
|
||
if (aMatrix.isComplex()){
|
||
return sum(conj(aMatrix)*aOther,direction);
|
||
}
|
||
else{
|
||
if (direction == Column)
|
||
{
|
||
auto ret = malloc(aMatrix.getDimSize(1));
|
||
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
||
ret[i]=cblas_ddot(aMatrix.getDimSize(0),aMatrix.getData()+i*aMatrix.getDimSize(0),1,
|
||
aOther.getData()+i*aMatrix.getDimSize(0),1);
|
||
}
|
||
return Matrix::New(ret,1,aMatrix.getDimSize(1),1);
|
||
}
|
||
else{
|
||
auto ret = malloc(aMatrix.getDimSize(0));
|
||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
||
ret[i] = cblas_ddot(aMatrix.getDimSize(1),aMatrix.getData()+i,aMatrix.getDimSize(0),
|
||
aOther.getData()+i,aMatrix.getDimSize(0));
|
||
}
|
||
return Matrix::New(ret,aMatrix.getDimSize(1),1,1);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
Matrix Aurora::sub2ind(const Matrix &aVMatrixSize, std::initializer_list<Matrix> aSliceIdxsList)
|
||
{
|
||
if (aSliceIdxsList.size() != aVMatrixSize.getDataSize()){
|
||
std::cerr<<"sub2ind size not match"<<std::endl;
|
||
return Matrix();
|
||
}
|
||
if (aSliceIdxsList.size() == 0){
|
||
std::cerr<<"sub2ind no index need calc!"<<std::endl;
|
||
return Matrix();
|
||
}
|
||
size_t returnVectorSize = aSliceIdxsList.begin()->getDataSize();
|
||
double *strides =new double[aVMatrixSize.getDataSize()+1];
|
||
strides[0] = 1;
|
||
for (int i = 1; i<=aVMatrixSize.getDataSize(); ++i) {
|
||
strides[i] = strides[i-1]*aVMatrixSize.getData()[i-1];
|
||
}
|
||
double* output = Aurora::malloc(returnVectorSize);
|
||
for (size_t i = 0; i<returnVectorSize; ++i) {
|
||
size_t j = 0;
|
||
std::for_each(aSliceIdxsList.begin(), aSliceIdxsList.end(), [strides,output,i,&aVMatrixSize,&j](const Matrix& matrix){
|
||
if(j == 0 ){
|
||
output[i]= (matrix.getData()[i])*strides[j];
|
||
}
|
||
else{
|
||
output[i]+= (matrix.getData()[i]-1)*strides[j];
|
||
}
|
||
++j;
|
||
});
|
||
}
|
||
return Matrix::New(output,returnVectorSize,1,1);
|
||
}
|