Files
Aurora/thirdparty/include/Spectra/contrib/PartialSVDSolver.h
2023-06-02 10:49:02 +08:00

212 lines
5.8 KiB
C++

// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_PARTIAL_SVD_SOLVER_H
#define SPECTRA_PARTIAL_SVD_SOLVER_H
#include <Eigen/Core>
#include "../SymEigsSolver.h"
namespace Spectra {
// Abstract class for matrix operation
template <typename Scalar_>
class SVDMatOp
{
public:
using Scalar = Scalar_;
private:
using Index = Eigen::Index;
public:
virtual Index rows() const = 0;
virtual Index cols() const = 0;
// y_out = A' * A * x_in or y_out = A * A' * x_in
virtual void perform_op(const Scalar* x_in, Scalar* y_out) const = 0;
virtual ~SVDMatOp() {}
};
// Operation of a tall matrix in SVD
// We compute the eigenvalues of A' * A
// MatrixType is either Eigen::Matrix<Scalar, ...> or Eigen::SparseMatrix<Scalar, ...>
template <typename Scalar, typename MatrixType>
class SVDTallMatOp : public SVDMatOp<Scalar>
{
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using MapConstVec = Eigen::Map<const Vector>;
using MapVec = Eigen::Map<Vector>;
using ConstGenericMatrix = const Eigen::Ref<const MatrixType>;
ConstGenericMatrix m_mat;
const Index m_dim;
mutable Vector m_cache;
public:
// Constructor
SVDTallMatOp(ConstGenericMatrix& mat) :
m_mat(mat),
m_dim((std::min)(mat.rows(), mat.cols())),
m_cache(mat.rows())
{}
// These are the rows and columns of A' * A
Index rows() const override { return m_dim; }
Index cols() const override { return m_dim; }
// y_out = A' * A * x_in
void perform_op(const Scalar* x_in, Scalar* y_out) const override
{
MapConstVec x(x_in, m_mat.cols());
MapVec y(y_out, m_mat.cols());
m_cache.noalias() = m_mat * x;
y.noalias() = m_mat.transpose() * m_cache;
}
};
// Operation of a wide matrix in SVD
// We compute the eigenvalues of A * A'
// MatrixType is either Eigen::Matrix<Scalar, ...> or Eigen::SparseMatrix<Scalar, ...>
template <typename Scalar, typename MatrixType>
class SVDWideMatOp : public SVDMatOp<Scalar>
{
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using MapConstVec = Eigen::Map<const Vector>;
using MapVec = Eigen::Map<Vector>;
using ConstGenericMatrix = const Eigen::Ref<const MatrixType>;
ConstGenericMatrix m_mat;
const Index m_dim;
mutable Vector m_cache;
public:
// Constructor
SVDWideMatOp(ConstGenericMatrix& mat) :
m_mat(mat),
m_dim((std::min)(mat.rows(), mat.cols())),
m_cache(mat.cols())
{}
// These are the rows and columns of A * A'
Index rows() const override { return m_dim; }
Index cols() const override { return m_dim; }
// y_out = A * A' * x_in
void perform_op(const Scalar* x_in, Scalar* y_out) const override
{
MapConstVec x(x_in, m_mat.rows());
MapVec y(y_out, m_mat.rows());
m_cache.noalias() = m_mat.transpose() * x;
y.noalias() = m_mat * m_cache;
}
};
// Partial SVD solver
// MatrixType is either Eigen::Matrix<Scalar, ...> or Eigen::SparseMatrix<Scalar, ...>
template <typename MatrixType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>>
class PartialSVDSolver
{
private:
using Scalar = typename MatrixType::Scalar;
using Index = Eigen::Index;
using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using ConstGenericMatrix = const Eigen::Ref<const MatrixType>;
ConstGenericMatrix m_mat;
const Index m_m;
const Index m_n;
SVDMatOp<Scalar>* m_op;
SymEigsSolver<SVDMatOp<Scalar>>* m_eigs;
Index m_nconv;
Matrix m_evecs;
public:
// Constructor
PartialSVDSolver(ConstGenericMatrix& mat, Index ncomp, Index ncv) :
m_mat(mat), m_m(mat.rows()), m_n(mat.cols()), m_evecs(0, 0)
{
// Determine the matrix type, tall or wide
if (m_m > m_n)
{
m_op = new SVDTallMatOp<Scalar, MatrixType>(mat);
}
else
{
m_op = new SVDWideMatOp<Scalar, MatrixType>(mat);
}
// Solver object
m_eigs = new SymEigsSolver<SVDMatOp<Scalar>>(*m_op, ncomp, ncv);
}
// Destructor
virtual ~PartialSVDSolver()
{
delete m_eigs;
delete m_op;
}
// Computation
Index compute(Index maxit = 1000, Scalar tol = 1e-10)
{
m_eigs->init();
m_nconv = m_eigs->compute(SortRule::LargestAlge, maxit, tol);
return m_nconv;
}
// The converged singular values
Vector singular_values() const
{
Vector svals = m_eigs->eigenvalues().cwiseSqrt();
return svals;
}
// The converged left singular vectors
Matrix matrix_U(Index nu)
{
if (m_evecs.cols() < 1)
{
m_evecs = m_eigs->eigenvectors();
}
nu = (std::min)(nu, m_nconv);
if (m_m <= m_n)
{
return m_evecs.leftCols(nu);
}
return m_mat * (m_evecs.leftCols(nu).array().rowwise() / m_eigs->eigenvalues().head(nu).transpose().array().sqrt()).matrix();
}
// The converged right singular vectors
Matrix matrix_V(Index nv)
{
if (m_evecs.cols() < 1)
{
m_evecs = m_eigs->eigenvectors();
}
nv = (std::min)(nv, m_nconv);
if (m_m > m_n)
{
return m_evecs.leftCols(nv);
}
return m_mat.transpose() * (m_evecs.leftCols(nv).array().rowwise() / m_eigs->eigenvalues().head(nv).transpose().array().sqrt()).matrix();
}
};
} // namespace Spectra
#endif // SPECTRA_PARTIAL_SVD_SOLVER_H