897 lines
30 KiB
C++
897 lines
30 KiB
C++
#include <gtest/gtest.h>
|
|
#include <chrono>
|
|
#include "AuroraDefs.h"
|
|
#include "CudaMatrix.h"
|
|
#include "Function.h"
|
|
#include "Matrix.h"
|
|
#include "TestUtility.h"
|
|
|
|
#include "Function2D.h"
|
|
#include "Function2D.cuh"
|
|
|
|
class Function2D_Cuda_Test:public ::testing::Test
|
|
{
|
|
protected:
|
|
static void SetUpFunction2DCudaTester(){
|
|
|
|
}
|
|
static void TearDownTestCase(){
|
|
}
|
|
public:
|
|
Aurora::Matrix B;
|
|
Aurora::CudaMatrix dB;
|
|
|
|
void SetUp(){
|
|
|
|
}
|
|
void TearDown(){
|
|
}
|
|
|
|
};
|
|
|
|
TEST_F(Function2D_Cuda_Test, min)
|
|
{
|
|
// big data for test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// Aurora::FunctionDirection direction, long &rowIdx, long &colIdx)
|
|
{
|
|
float *dataB = Aurora::random(4096*41472);
|
|
B = Aurora::Matrix::fromRawData(dataB, 4096, 41472);
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::min(B, Aurora::Column,r,c);
|
|
|
|
auto ret2 = Aurora::min(dB, Aurora::Column,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
|
|
ret1 = Aurora::min(B, Aurora::FunctionDirection::Row,r,c);
|
|
|
|
ret2 = Aurora::min(dB, Aurora::FunctionDirection::Row,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// different size speed
|
|
// Aurora::Matrix Aurora::min(const Aurora::Matrix &aMatrix,
|
|
// Aurora::FunctionDirection direction, long &rowIdx, long &colIdx)
|
|
// in col wise
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::min(B, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
auto ret2 = Aurora::min(dB, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
B.forceReshape( 111,3157, 1);
|
|
dB = B.toDeviceMatrix();
|
|
|
|
ret1 = Aurora::min(B, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ret2 = Aurora::min(dB, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix, float aValue)
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
auto start_time_ = std::chrono::high_resolution_clock::now();
|
|
|
|
auto ret1 = Aurora::min(B, 500.5f);
|
|
|
|
|
|
auto ret2 = Aurora::min(dB, 500.5f);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// const Aurora::Matrix &aOther)
|
|
// with same size matrix
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
float *dataA = Aurora::random(3157*111);
|
|
auto A = Aurora::Matrix::fromRawData(dataA, 3157, 111);
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
auto dA = A.toDeviceMatrix();
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::min(B, A);
|
|
|
|
auto ret2 = Aurora::min(dB, dA);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// const Aurora::Matrix &aOther)
|
|
// with col-vec and matrix
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
float *dataA = Aurora::random(3157);
|
|
auto A = Aurora::Matrix::fromRawData(dataA, 3157, 1);
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
auto dA = A.toDeviceMatrix();
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::min(B, A);
|
|
|
|
auto ret2 = Aurora::min(dB, dA);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
ret2 = Aurora::min(dA, dB);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// const Aurora::Matrix &aOther)
|
|
// with row-vec and matrix
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
float *dataA = Aurora::random(111);
|
|
auto A = Aurora::Matrix::fromRawData(dataA, 1, 111);
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
auto dA = A.toDeviceMatrix();
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
auto start_time_ = std::chrono::high_resolution_clock::now();
|
|
|
|
auto ret1 = Aurora::min(B, A);
|
|
|
|
auto ret2 = Aurora::min(dB, dA);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, max)
|
|
{
|
|
// big data for test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// Aurora::FunctionDirection direction, long &rowIdx, long &colIdx)
|
|
{
|
|
float *dataB = Aurora::random(4096*41472);
|
|
B = Aurora::Matrix::fromRawData(dataB, 4096, 41472);
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
auto ret1 = Aurora::max(B, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
auto ret2 = Aurora::max(dB, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
ret1 = Aurora::max(B, Aurora::FunctionDirection::Row,r,c);
|
|
|
|
ret2 = Aurora::max(dB, Aurora::FunctionDirection::Row,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// different size speed
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// Aurora::FunctionDirection direction, long &rowIdx, long &colIdx)
|
|
// in col wise
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::max(B, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
auto ret2 = Aurora::max(dB, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
B.forceReshape( 111,3157, 1);
|
|
dB = B.toDeviceMatrix();
|
|
|
|
ret1 = Aurora::max(B, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ret2 = Aurora::max(dB, Aurora::FunctionDirection::Column,r,c);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix, float aValue)
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::max(B, 500.5f);
|
|
|
|
auto ret2 = Aurora::max(dB, 500.5f);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// const Aurora::Matrix &aOther)
|
|
// with same size matrix
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
float *dataA = Aurora::random(3157*111);
|
|
auto A = Aurora::Matrix::fromRawData(dataA, 3157, 111);
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
auto dA = A.toDeviceMatrix();
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
auto start_time_ = std::chrono::high_resolution_clock::now();
|
|
|
|
auto ret1 = Aurora::max(B, A);
|
|
|
|
auto ret2 = Aurora::max(dB, dA);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// const Aurora::Matrix &aOther)
|
|
// with col-vec and matrix
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
float *dataA = Aurora::random(3157);
|
|
auto A = Aurora::Matrix::fromRawData(dataA, 3157, 1);
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
auto dA = A.toDeviceMatrix();
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
|
|
auto ret1 = Aurora::max(B, A);
|
|
|
|
// mat x vec
|
|
auto ret2 = Aurora::max(dB, dA);
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
// vec x mat
|
|
ret2 = Aurora::max(dA, dB);
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
// test
|
|
// Aurora::Matrix Aurora::max(const Aurora::Matrix &aMatrix,
|
|
// const Aurora::Matrix &aOther)
|
|
// with row-vec and matrix
|
|
{
|
|
float *dataB = Aurora::random(3157*111);
|
|
float *dataA = Aurora::random(111);
|
|
auto A = Aurora::Matrix::fromRawData(dataA, 1, 111);
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 3157, 111);
|
|
auto dA = A.toDeviceMatrix();
|
|
dB = B.toDeviceMatrix();
|
|
long r,c;
|
|
auto start_time_ = std::chrono::high_resolution_clock::now();
|
|
|
|
auto ret1 = Aurora::max(B, A);
|
|
// mat x vec
|
|
auto ret2 = Aurora::max(dB, dA);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
//vec x mat
|
|
ret2 = Aurora::max(dA, dB);
|
|
|
|
ASSERT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
ASSERT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
ASSERT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, sum)
|
|
{
|
|
//
|
|
{
|
|
// float *dataB = Aurora::random(4096*50000);
|
|
float* dataB = new float[4096*5000];
|
|
for (size_t i = 0; i < 4096*5000; i++)
|
|
{
|
|
dataB[i] = (i%2==0?1.0f:0.0f);
|
|
}
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 4096, 5000);
|
|
// B = Aurora::Matrix::fromRawData(dataB, 200, 200);
|
|
|
|
auto dD = B.toDeviceMatrix();
|
|
|
|
auto ret1 = Aurora::sum(B, Aurora::FunctionDirection::All);
|
|
|
|
auto ret2 = Aurora::sum(dD, Aurora::FunctionDirection::All);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
|
|
ret1 = Aurora::sum(B, Aurora::FunctionDirection::Column);
|
|
|
|
ret2 = Aurora::sum(dD, Aurora::FunctionDirection::Column);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i))
|
|
}
|
|
|
|
|
|
ret1 = Aurora::sum(B, Aurora::FunctionDirection::Row);
|
|
|
|
ret2 = Aurora::sum(dD, Aurora::FunctionDirection::Row);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i))
|
|
}
|
|
}
|
|
//complex type
|
|
{
|
|
float* dataB = new float[3000*2000*2];
|
|
for (size_t i = 0; i < 3000*4000; i++)
|
|
{
|
|
dataB[i] = i%2==0?2.0f:1.0f;
|
|
}
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB,3000, 2000,1,Aurora::Complex);
|
|
|
|
auto dD = B.toDeviceMatrix();
|
|
|
|
auto ret1 = Aurora::sum(B, Aurora::FunctionDirection::All);
|
|
|
|
auto ret2 = Aurora::sum(dD, Aurora::FunctionDirection::All);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize()*2; i++)
|
|
{
|
|
EXPECT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
ret1 = Aurora::sum(B, Aurora::FunctionDirection::Column);
|
|
|
|
ret2 = Aurora::sum(dD, Aurora::FunctionDirection::Column);
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i))
|
|
}
|
|
|
|
|
|
ret1 = Aurora::sum(B, Aurora::FunctionDirection::Row);
|
|
|
|
ret2 = Aurora::sum(dD, Aurora::FunctionDirection::Row);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i))
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, mean)
|
|
{
|
|
//
|
|
{
|
|
float* dataB = new float[4096*500];
|
|
for (size_t i = 0; i < 4096*500; i++)
|
|
{
|
|
dataB[i] = (float)(i%2==0?1:0);
|
|
}
|
|
|
|
B = Aurora::Matrix::fromRawData(dataB, 4096, 500);
|
|
// B = Aurora::Matrix::fromRawData(dataB, 200, 200);
|
|
|
|
auto dD = B.toDeviceMatrix();
|
|
|
|
auto ret1 = Aurora::mean(B, Aurora::FunctionDirection::All);
|
|
|
|
auto ret2 = Aurora::mean(dD, Aurora::FunctionDirection::All);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
|
|
ret1 = Aurora::mean(B, Aurora::FunctionDirection::Column);
|
|
|
|
ret2 = Aurora::mean(dD, Aurora::FunctionDirection::Column);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i))
|
|
}
|
|
|
|
|
|
ret1 = Aurora::mean(B, Aurora::FunctionDirection::Row);
|
|
|
|
ret2 = Aurora::mean(dD, Aurora::FunctionDirection::Row);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i))
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, sort)
|
|
{
|
|
//
|
|
{
|
|
float* dataB = Aurora::random(25000000);
|
|
B = Aurora::Matrix::fromRawData(dataB, 500, 500);
|
|
// B = Aurora::Matrix::fromRawData(dataB, 200, 200);
|
|
|
|
auto dD = B.toDeviceMatrix();
|
|
|
|
auto ret1 = Aurora::sort(B, Aurora::Column);
|
|
|
|
auto ret2 = Aurora::sort(dD,Aurora::Column);
|
|
|
|
EXPECT_EQ(ret1.getDimSize(0),ret2.getDimSize(0));
|
|
EXPECT_EQ(ret1.getDimSize(1),ret2.getDimSize(1));
|
|
EXPECT_EQ(ret1.getDimSize(2),ret2.getDimSize(2));
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_EQ(ret1[i], ret2.getValue(i))<<", index at :"<<i;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, fft)
|
|
{
|
|
{
|
|
float *input = new float[20]{1,1,0,2,2,0,1,1,0,2,1,1,0,2,2,0,1,1,0,2};
|
|
auto ma = Aurora::Matrix::fromRawData(input,10,2).toDeviceMatrix();
|
|
auto fftrett = Aurora::fft(ma);
|
|
auto fftrettH = fftrett.toHostMatrix();
|
|
std::complex<float>* result = (std::complex<float>*)fftrettH.getData();
|
|
//检验fft结果与matlab是否对应
|
|
EXPECT_FLOAT_EQ(0.0729, fourDecimalRound(result[1].real()));
|
|
EXPECT_FLOAT_EQ(2.4899, fourDecimalRound(result[2].imag()));
|
|
EXPECT_FLOAT_EQ(0.0729, fourDecimalRound(result[11].real()));
|
|
EXPECT_FLOAT_EQ(2.4899, fourDecimalRound(result[12].imag()));
|
|
//检验fft的结果是否共轭
|
|
EXPECT_FLOAT_EQ(0, result[4].imag()+result[6].imag());
|
|
EXPECT_FLOAT_EQ(0, result[4].real()-result[6].real());
|
|
|
|
|
|
auto ret= Aurora::ifft(fftrett);
|
|
auto retH = ret.toHostMatrix();
|
|
std::complex<float>* ifftResult = (std::complex<float>*)retH.getData();
|
|
EXPECT_FLOAT_EQ(fourDecimalRound(ifftResult[1].real()),1.0);
|
|
EXPECT_FLOAT_EQ(fourDecimalRound(ifftResult[3].real()),2.0);
|
|
EXPECT_FLOAT_EQ(fourDecimalRound(ifftResult[11].real()),1.0);
|
|
EXPECT_FLOAT_EQ(fourDecimalRound(ifftResult[13].real()),2.0);
|
|
auto fftrett2 = Aurora::fft(ma,5);
|
|
auto fftrett2H =fftrett2.toHostMatrix();
|
|
|
|
auto result2 = (std::complex<float>*)fftrett2H.getData();
|
|
//检验fft结果与matlab是否对应
|
|
EXPECT_FLOAT_EQ(0.3090, fourDecimalRound(result2[1].real()));
|
|
EXPECT_FLOAT_EQ(-1.3143, fourDecimalRound(result2[2].imag()));
|
|
EXPECT_FLOAT_EQ(-0.8090, fourDecimalRound(result2[7].real()));
|
|
EXPECT_FLOAT_EQ(1.3143, fourDecimalRound(result2[8].imag()));
|
|
|
|
auto fftrett3 = Aurora::fft(ma,12);
|
|
auto fftrett3H = fftrett3.toHostMatrix();
|
|
|
|
auto result3 = (std::complex<float>*)fftrett3H.getData();
|
|
//检验fft结果与matlab是否对应
|
|
EXPECT_FLOAT_EQ(-1.0, fourDecimalRound(result3[1].real()));
|
|
EXPECT_FLOAT_EQ(-3.4641, fourDecimalRound(result3[4].imag()));
|
|
EXPECT_FLOAT_EQ(-1.0, fourDecimalRound(result3[13].real()));
|
|
EXPECT_FLOAT_EQ(-3.4641, fourDecimalRound(result3[16].imag()));
|
|
}
|
|
{
|
|
float *input = new float[20]{1,1,0,2,2,0,1,1,0,2,1,1,0,2,2,0,1,1,0,2};
|
|
auto ma = Aurora::Matrix::fromRawData(input,10,1, 1,Aurora::Complex);
|
|
auto maD = ma.toDeviceMatrix();
|
|
auto ret1 = Aurora::fft(ma);
|
|
auto ret2 = Aurora::fft(maD);
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i));
|
|
}
|
|
ret1 = Aurora::fft(ma,12);
|
|
ret2 = Aurora::fft(maD,12);
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i));
|
|
}
|
|
ret1 = Aurora::fft(ma,8);
|
|
ret2 = Aurora::fft(maD,8);
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i));
|
|
}
|
|
|
|
}
|
|
{
|
|
float *input = new float[20]{1,1,0,2,2,0,1,1,0,2,1,1,0,2,2,0,1,1,0,2};
|
|
auto ma = Aurora::Matrix::fromRawData(input,10,1,1, Aurora::Complex);
|
|
auto maD = ma.toDeviceMatrix();
|
|
auto ret1 = Aurora::ifft(Aurora::fft(ma),12);
|
|
auto ret2 = Aurora::ifft(Aurora::fft(maD),12);
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i));
|
|
}
|
|
ret1 = Aurora::ifft(Aurora::fft(ma),8);
|
|
ret2 = Aurora::ifft(Aurora::fft(maD),8);
|
|
for (size_t i = 0; i < ret1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(ret1[i], ret2.getValue(i));
|
|
}
|
|
|
|
}
|
|
{
|
|
float * data = new float[36];
|
|
for (size_t i = 0; i < 18; i++)
|
|
{
|
|
data[i*2] = i%9+1;
|
|
data[i*2+1] = 1;
|
|
}
|
|
auto fm = Aurora::Matrix::fromRawData(data,9,2,1,Aurora::Complex);
|
|
auto fmD = fm.toDeviceMatrix();
|
|
Aurora::fftshift(fm);
|
|
Aurora::fftshift(fmD);
|
|
for (size_t i = 0; i < fm.getDataSize()*2; i++)
|
|
{
|
|
EXPECT_FLOAT_AE(fm[i], fmD.getValue(i));
|
|
}
|
|
Aurora::ifftshift(fm);
|
|
Aurora::ifftshift(fmD);
|
|
for (size_t i = 0; i < fm.getDataSize()*2; i++)
|
|
{
|
|
EXPECT_FLOAT_AE(fm[i], fmD.getValue(i));
|
|
}
|
|
}
|
|
{
|
|
float * data = new float[250000];
|
|
for (size_t i = 0; i < 250000; i++)
|
|
{
|
|
data[i] = i%500;
|
|
}
|
|
auto fm = Aurora::Matrix::fromRawData(data,500,250,1,Aurora::Complex);
|
|
auto fmD = fm.toDeviceMatrix();
|
|
Aurora::fftshift(fm);
|
|
Aurora::fftshift(fmD);
|
|
for (size_t i = 0; i < fm.getDataSize()*2; i++)
|
|
{
|
|
EXPECT_FLOAT_AE(fm[i], fmD.getValue(i));
|
|
}
|
|
Aurora::ifftshift(fm);
|
|
Aurora::ifftshift(fmD);
|
|
for (size_t i = 0; i < fm.getDataSize()*2; i++)
|
|
{
|
|
EXPECT_FLOAT_AE(fm[i], fmD.getValue(i));
|
|
}
|
|
}
|
|
{
|
|
float * data = new float[333*500];
|
|
for (size_t i = 0; i < 333*500; i++)
|
|
{
|
|
data[i] = i%333;
|
|
}
|
|
auto fm = Aurora::Matrix::fromRawData(data,333,250,1,Aurora::Complex);
|
|
auto fmD = fm.toDeviceMatrix();
|
|
Aurora::fftshift(fm);
|
|
Aurora::fftshift(fmD);
|
|
for (size_t i = 0; i < fm.getDataSize()*2; i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(fm[i], fmD.getValue(i))<<"index:"<<i;
|
|
}
|
|
Aurora::ifftshift(fm);
|
|
Aurora::ifftshift(fmD);
|
|
for (size_t i = 0; i < fm.getDataSize()*2; i++)
|
|
{
|
|
EXPECT_FLOAT_AE(fm[i], fmD.getValue(i));
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, immse) {
|
|
auto matrixHost1 = Aurora::Matrix::fromRawData(Aurora::random(10000), 50,200);
|
|
auto matrixHost2 = Aurora::Matrix::fromRawData(Aurora::random(10000), 50,200);
|
|
auto matrixDevice1 = matrixHost1.toDeviceMatrix();
|
|
auto matrixDevice2 = matrixHost1.toDeviceMatrix();
|
|
auto result1 = Aurora::immse(matrixHost1, matrixHost2);
|
|
auto result2 = Aurora::immse(matrixDevice1, matrixDevice2);
|
|
EXPECT_FLOAT_AE(result1, result2);
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, sortRows) {
|
|
auto matrixHost1 = Aurora::Matrix::fromRawData(Aurora::random(10000), 50,200);
|
|
Aurora::Matrix matrixHost2;
|
|
auto matrixDevice1 = matrixHost1.toDeviceMatrix();
|
|
Aurora::CudaMatrix matrixDevice2;
|
|
auto result1 = Aurora::sortrows(matrixHost1, &matrixHost2);
|
|
auto result2 = Aurora::sortrows(matrixDevice1, matrixDevice2).toHostMatrix();
|
|
auto result3 = matrixHost2;
|
|
auto result4 = matrixDevice2.toHostMatrix();
|
|
ASSERT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
for (size_t i = 0; i < result1.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(result1[i], result2[i]);
|
|
}
|
|
|
|
ASSERT_FLOAT_EQ(result3.getDataSize(), result4.getDataSize());
|
|
for (size_t i = 0; i < result3.getDataSize(); i++)
|
|
{
|
|
ASSERT_FLOAT_EQ(result3[i], result4[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, inv) {
|
|
auto matrixHost = Aurora::Matrix::fromRawData(new float[16]{4,6,7,8,9,3,7,5,4,3,2,1,2,3,4,5}, 4,4);
|
|
auto matrixDevice = matrixHost.toDeviceMatrix();
|
|
auto result1 = Aurora::inv(matrixHost);
|
|
auto result2 = Aurora::inv(matrixDevice).toHostMatrix();
|
|
ASSERT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
for (size_t i = 0; i < result1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(result1[i], result2[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, dot) {
|
|
auto matrixHost1 = Aurora::Matrix::fromRawData(new float[200000], 1000,200);
|
|
auto matrixHost2 = Aurora::Matrix::fromRawData(new float[200000], 1000,200);
|
|
for(unsigned int i=0; i<200000;++i)
|
|
{
|
|
matrixHost1[i] = i;
|
|
matrixHost2[i] = i + 1;
|
|
}
|
|
auto matrixDevice1 = matrixHost1.toDeviceMatrix();
|
|
Aurora::CudaMatrix matrixDevice2 = matrixHost2.toDeviceMatrix();
|
|
auto result1 = Aurora::dot(matrixHost1, matrixHost2);
|
|
auto result2 = Aurora::dot(matrixDevice1, matrixDevice2).toHostMatrix();
|
|
ASSERT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
for (size_t i = 0; i < result1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(result1[i], result2[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, prod) {
|
|
auto matrixHost = Aurora::Matrix::fromRawData(new float[20], 4,5);
|
|
for(unsigned int i=0; i<20;++i)
|
|
{
|
|
matrixHost[i] = i + 1;
|
|
}
|
|
auto matrixDevice = matrixHost.toDeviceMatrix();
|
|
auto result1 = Aurora::prod(matrixHost);
|
|
auto result2 = Aurora::prod(matrixDevice).toHostMatrix();
|
|
ASSERT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
for (size_t i = 0; i < result1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(result1[i], result2[i]);
|
|
}
|
|
|
|
matrixHost = Aurora::Matrix::fromRawData(new float[20], 20,1);
|
|
for(unsigned int i=0; i<20;++i)
|
|
{
|
|
matrixHost[i] = i + 1;
|
|
}
|
|
matrixDevice = matrixHost.toDeviceMatrix();
|
|
result1 = Aurora::prod(matrixHost);
|
|
result2 = Aurora::prod(matrixDevice).toHostMatrix();
|
|
ASSERT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
for (size_t i = 0; i < result1.getDataSize(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(result1[i], result2[i]);
|
|
}
|
|
|
|
auto matrixHostComplex = Aurora::Matrix::fromRawData(new float[20], 2,5, 1,Aurora::Complex);
|
|
for(unsigned int i=0; i<20;++i)
|
|
{
|
|
matrixHost[i] = i + 1;
|
|
}
|
|
|
|
matrixDevice = matrixHostComplex.toDeviceMatrix();
|
|
result1 = Aurora::prod(matrixHostComplex);
|
|
result2 = Aurora::prod(matrixDevice).toHostMatrix();
|
|
ASSERT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
ASSERT_FLOAT_EQ(result1.getValueType(), result2.getValueType());
|
|
for (size_t i = 0; i < result1.getDataSize() * result1.getValueType(); i++)
|
|
{
|
|
EXPECT_FLOAT_AE(result1[i], result2[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(Function2D_Cuda_Test, sub2ind) {
|
|
float* dI1= new float[4]{1,2,1,2};
|
|
Aurora::Matrix I1(std::shared_ptr<float>(dI1,std::default_delete<float[]>()),std::vector<int>{4});
|
|
float* dI2= new float[4]{2,2,1,1};
|
|
Aurora::Matrix I2(std::shared_ptr<float>(dI2,std::default_delete<float[]>()),std::vector<int>{4});
|
|
float* dI4= new float[4]{1,1,2,2};
|
|
Aurora::Matrix I3(std::shared_ptr<float>(dI4,std::default_delete<float[]>()),std::vector<int>{4});
|
|
float* dsz= new float[3]{2,2,2};
|
|
Aurora::Matrix sz(std::shared_ptr<float>(dsz,std::default_delete<float[]>()),std::vector<int>{3});
|
|
auto result1 = Aurora::sub2ind(sz, {I1, I2, I3});
|
|
auto result2 = Aurora::sub2ind(sz.toDeviceMatrix(), {I1.toDeviceMatrix(), I2.toDeviceMatrix(), I3.toDeviceMatrix()}).toHostMatrix();
|
|
EXPECT_FLOAT_EQ(result1.getDataSize(), result2.getDataSize());
|
|
for(unsigned int i=0; i<result1.getDataSize(); ++i)
|
|
{
|
|
EXPECT_FLOAT_EQ(result1[i], result2[i]);
|
|
}
|
|
} |