Files
Aurora/thirdparty/include/Spectra/LinAlg/DoubleShiftQR.h
2023-06-02 10:49:02 +08:00

441 lines
14 KiB
C++

// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_DOUBLE_SHIFT_QR_H
#define SPECTRA_DOUBLE_SHIFT_QR_H
#include <Eigen/Core>
#include <vector> // std::vector
#include <algorithm> // std::min, std::fill, std::copy
#include <utility> // std::swap
#include <cmath> // std::abs, std::sqrt, std::pow
#include <stdexcept> // std::invalid_argument, std::logic_error
#include "../Util/TypeTraits.h"
namespace Spectra {
template <typename Scalar = double>
class DoubleShiftQR
{
private:
using Index = Eigen::Index;
using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
using Matrix3X = Eigen::Matrix<Scalar, 3, Eigen::Dynamic>;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using IntArray = Eigen::Array<unsigned char, Eigen::Dynamic, 1>;
using GenericMatrix = Eigen::Ref<Matrix>;
using ConstGenericMatrix = const Eigen::Ref<const Matrix>;
// A very small value, but 1.0 / m_near_0 does not overflow
// ~= 1e-307 for the "double" type
static constexpr Scalar m_near_0 = TypeTraits<Scalar>::min() * Scalar(10);
// The machine precision, ~= 1e-16 for the "double" type
static constexpr Scalar m_eps = TypeTraits<Scalar>::epsilon();
Index m_n; // Dimension of the matrix
Matrix m_mat_H; // A copy of the matrix to be factorized
Scalar m_shift_s; // Shift constant
Scalar m_shift_t; // Shift constant
Matrix3X m_ref_u; // Householder reflectors
IntArray m_ref_nr; // How many rows does each reflector affects
// 3 - A general reflector
// 2 - A Givens rotation
// 1 - An identity transformation
bool m_computed; // Whether matrix has been factorized
// Compute sqrt(x1^2 + x2^2 + x3^2) wit high precision
static Scalar stable_norm3(Scalar x1, Scalar x2, Scalar x3)
{
using std::abs;
using std::sqrt;
x1 = abs(x1);
x2 = abs(x2);
x3 = abs(x3);
// Make x1 >= {x2, x3}
if (x1 < x2)
std::swap(x1, x2);
if (x1 < x3)
std::swap(x1, x3);
// If x1 is too small, return 0
if (x1 < m_near_0)
return Scalar(0);
const Scalar r2 = x2 / x1, r3 = x3 / x1;
// We choose a cutoff such that cutoff^4 < eps
// If max(r2, r3) > cutoff, use the standard way; otherwise use Taylor series expansion
// to avoid an explicit sqrt() call that may lose precision
const Scalar cutoff = Scalar(0.1) * pow(m_eps, Scalar(0.25));
Scalar r = r2 * r2 + r3 * r3;
r = (r2 >= cutoff || r3 >= cutoff) ?
sqrt(Scalar(1) + r) :
(Scalar(1) + r * (Scalar(0.5) - Scalar(0.125) * r)); // sqrt(1 + t) ~= 1 + t/2 - t^2/8
return x1 * r;
}
// x[i] <- x[i] / r, r = sqrt(x1^2 + x2^2 + x3^2)
// Assume |x1| >= {|x2|, |x3|}, x1 != 0
static void stable_scaling(Scalar& x1, Scalar& x2, Scalar& x3)
{
using std::abs;
using std::pow;
using std::sqrt;
const Scalar x1sign = (x1 > Scalar(0)) ? Scalar(1) : Scalar(-1);
x1 = abs(x1);
// Use the same method as in stable_norm3()
const Scalar r2 = x2 / x1, r3 = x3 / x1;
const Scalar cutoff = Scalar(0.1) * pow(m_eps, Scalar(0.25));
Scalar r = r2 * r2 + r3 * r3;
// r = 1/sqrt(1 + r2^2 + r3^2)
r = (abs(r2) >= cutoff || abs(r3) >= cutoff) ?
Scalar(1) / sqrt(Scalar(1) + r) :
(Scalar(1) - r * (Scalar(0.5) - Scalar(0.375) * r)); // 1/sqrt(1 + t) ~= 1 - t * (1/2 - (3/8) * t)
x1 = x1sign * r;
x2 = r2 * r;
x3 = r3 * r;
}
void compute_reflector(const Scalar& x1, const Scalar& x2, const Scalar& x3, Index ind)
{
using std::abs;
Scalar* u = &m_ref_u.coeffRef(0, ind);
unsigned char* nr = m_ref_nr.data();
const Scalar x2m = abs(x2), x3m = abs(x3);
// If both x2 and x3 are zero, nr is 1, and we early exit
if (x2m < m_near_0 && x3m < m_near_0)
{
nr[ind] = 1;
return;
}
// In general case the reflector affects 3 rows
// If x3 is zero, decrease nr by 1
nr[ind] = (x3m < m_near_0) ? 2 : 3;
const Scalar x_norm = (x3m < m_near_0) ? Eigen::numext::hypot(x1, x2) : stable_norm3(x1, x2, x3);
// x1' = x1 - rho * ||x||
// rho = -sign(x1), if x1 == 0, we choose rho = 1
const Scalar rho = (x1 <= Scalar(0)) - (x1 > Scalar(0));
const Scalar x1_new = x1 - rho * x_norm, x1m = abs(x1_new);
// Copy x to u
u[0] = x1_new;
u[1] = x2;
u[2] = x3;
if (x1m >= x2m && x1m >= x3m)
{
stable_scaling(u[0], u[1], u[2]);
}
else if (x2m >= x1m && x2m >= x3m)
{
stable_scaling(u[1], u[0], u[2]);
}
else
{
stable_scaling(u[2], u[0], u[1]);
}
}
void compute_reflector(const Scalar* x, Index ind)
{
compute_reflector(x[0], x[1], x[2], ind);
}
// Update the block X = H(il:iu, il:iu)
void update_block(Index il, Index iu)
{
// Block size
const Index bsize = iu - il + 1;
// If block size == 1, there is no need to apply reflectors
if (bsize == 1)
{
m_ref_nr.coeffRef(il) = 1;
return;
}
const Scalar x00 = m_mat_H.coeff(il, il),
x01 = m_mat_H.coeff(il, il + 1),
x10 = m_mat_H.coeff(il + 1, il),
x11 = m_mat_H.coeff(il + 1, il + 1);
// m00 = x00 * (x00 - s) + x01 * x10 + t
const Scalar m00 = x00 * (x00 - m_shift_s) + x01 * x10 + m_shift_t;
// m10 = x10 * (x00 + x11 - s)
const Scalar m10 = x10 * (x00 + x11 - m_shift_s);
// For block size == 2, do a Givens rotation on M = X * X - s * X + t * I
if (bsize == 2)
{
// This causes nr=2
compute_reflector(m00, m10, 0, il);
// Apply the reflector to X
apply_PX(m_mat_H.block(il, il, 2, m_n - il), m_n, il);
apply_XP(m_mat_H.block(0, il, il + 2, 2), m_n, il);
m_ref_nr.coeffRef(il + 1) = 1;
return;
}
// For block size >=3, use the regular strategy
// m20 = x21 * x10
const Scalar m20 = m_mat_H.coeff(il + 2, il + 1) * m_mat_H.coeff(il + 1, il);
compute_reflector(m00, m10, m20, il);
// Apply the first reflector
apply_PX(m_mat_H.block(il, il, 3, m_n - il), m_n, il);
apply_XP(m_mat_H.block(0, il, il + (std::min)(bsize, Index(4)), 3), m_n, il);
// Calculate the following reflectors
// If entering this loop, block size is at least 4.
for (Index i = 1; i < bsize - 2; i++)
{
compute_reflector(&m_mat_H.coeffRef(il + i, il + i - 1), il + i);
// Apply the reflector to X
apply_PX(m_mat_H.block(il + i, il + i - 1, 3, m_n - il - i + 1), m_n, il + i);
apply_XP(m_mat_H.block(0, il + i, il + (std::min)(bsize, Index(i + 4)), 3), m_n, il + i);
}
// The last reflector
// This causes nr=2
compute_reflector(m_mat_H.coeff(iu - 1, iu - 2), m_mat_H.coeff(iu, iu - 2), 0, iu - 1);
// Apply the reflector to X
apply_PX(m_mat_H.block(iu - 1, iu - 2, 2, m_n - iu + 2), m_n, iu - 1);
apply_XP(m_mat_H.block(0, iu - 1, il + bsize, 2), m_n, iu - 1);
m_ref_nr.coeffRef(iu) = 1;
}
// P = I - 2 * u * u' = P'
// PX = X - 2 * u * (u'X)
void apply_PX(GenericMatrix X, Index stride, Index u_ind) const
{
const Index nr = m_ref_nr.coeff(u_ind);
if (nr == 1)
return;
const Scalar u0 = m_ref_u.coeff(0, u_ind), u1 = m_ref_u.coeff(1, u_ind);
const Scalar u0_2 = Scalar(2) * u0, u1_2 = Scalar(2) * u1;
const Index nrow = X.rows();
const Index ncol = X.cols();
Scalar* xptr = X.data();
if (nr == 2 || nrow == 2)
{
for (Index i = 0; i < ncol; i++, xptr += stride)
{
const Scalar tmp = u0_2 * xptr[0] + u1_2 * xptr[1];
xptr[0] -= tmp * u0;
xptr[1] -= tmp * u1;
}
}
else
{
const Scalar u2 = m_ref_u.coeff(2, u_ind);
const Scalar u2_2 = Scalar(2) * u2;
for (Index i = 0; i < ncol; i++, xptr += stride)
{
const Scalar tmp = u0_2 * xptr[0] + u1_2 * xptr[1] + u2_2 * xptr[2];
xptr[0] -= tmp * u0;
xptr[1] -= tmp * u1;
xptr[2] -= tmp * u2;
}
}
}
// x is a pointer to a vector
// Px = x - 2 * dot(x, u) * u
void apply_PX(Scalar* x, Index u_ind) const
{
const Index nr = m_ref_nr.coeff(u_ind);
if (nr == 1)
return;
const Scalar u0 = m_ref_u.coeff(0, u_ind),
u1 = m_ref_u.coeff(1, u_ind),
u2 = m_ref_u.coeff(2, u_ind);
// When the reflector only contains two elements, u2 has been set to zero
const bool nr_is_2 = (nr == 2);
const Scalar dot2 = Scalar(2) * (x[0] * u0 + x[1] * u1 + (nr_is_2 ? 0 : (x[2] * u2)));
x[0] -= dot2 * u0;
x[1] -= dot2 * u1;
if (!nr_is_2)
x[2] -= dot2 * u2;
}
// XP = X - 2 * (X * u) * u'
void apply_XP(GenericMatrix X, Index stride, Index u_ind) const
{
const Index nr = m_ref_nr.coeff(u_ind);
if (nr == 1)
return;
const Scalar u0 = m_ref_u.coeff(0, u_ind), u1 = m_ref_u.coeff(1, u_ind);
const Scalar u0_2 = Scalar(2) * u0, u1_2 = Scalar(2) * u1;
const int nrow = X.rows();
const int ncol = X.cols();
Scalar *X0 = X.data(), *X1 = X0 + stride; // X0 => X.col(0), X1 => X.col(1)
if (nr == 2 || ncol == 2)
{
// tmp = 2 * u0 * X0 + 2 * u1 * X1
// X0 => X0 - u0 * tmp
// X1 => X1 - u1 * tmp
for (Index i = 0; i < nrow; i++)
{
const Scalar tmp = u0_2 * X0[i] + u1_2 * X1[i];
X0[i] -= tmp * u0;
X1[i] -= tmp * u1;
}
}
else
{
Scalar* X2 = X1 + stride; // X2 => X.col(2)
const Scalar u2 = m_ref_u.coeff(2, u_ind);
const Scalar u2_2 = Scalar(2) * u2;
for (Index i = 0; i < nrow; i++)
{
const Scalar tmp = u0_2 * X0[i] + u1_2 * X1[i] + u2_2 * X2[i];
X0[i] -= tmp * u0;
X1[i] -= tmp * u1;
X2[i] -= tmp * u2;
}
}
}
public:
DoubleShiftQR(Index size) :
m_n(size),
m_computed(false)
{}
DoubleShiftQR(ConstGenericMatrix& mat, const Scalar& s, const Scalar& t) :
m_n(mat.rows()),
m_mat_H(m_n, m_n),
m_shift_s(s),
m_shift_t(t),
m_ref_u(3, m_n),
m_ref_nr(m_n),
m_computed(false)
{
compute(mat, s, t);
}
void compute(ConstGenericMatrix& mat, const Scalar& s, const Scalar& t)
{
using std::abs;
m_n = mat.rows();
if (m_n != mat.cols())
throw std::invalid_argument("DoubleShiftQR: matrix must be square");
m_mat_H.resize(m_n, m_n);
m_shift_s = s;
m_shift_t = t;
m_ref_u.resize(3, m_n);
m_ref_nr.resize(m_n);
// Make a copy of mat
m_mat_H.noalias() = mat;
// Obtain the indices of zero elements in the subdiagonal,
// so that H can be divided into several blocks
const Scalar eps_abs = m_near_0 * (m_n / m_eps);
constexpr Scalar eps_rel = m_eps;
std::vector<int> zero_ind;
zero_ind.reserve(m_n - 1);
zero_ind.push_back(0);
Scalar* Hii = m_mat_H.data();
for (Index i = 0; i < m_n - 1; i++, Hii += (m_n + 1))
{
// Hii[0] => m_mat_H(i, i)
// Hii[1] => m_mat_H(i + 1, i)
// Hii[m_n + 1] => m_mat_H(i + 1, i + 1)
const Scalar h = abs(Hii[1]);
// Deflate small sub-diagonal elements
const Scalar diag = abs(Hii[0]) + abs(Hii[m_n + 1]);
if (h <= eps_abs || h <= eps_rel * diag)
{
Hii[1] = 0;
zero_ind.push_back(i + 1);
}
// Make sure m_mat_H is upper Hessenberg
// Zero the elements below m_mat_H(i + 1, i)
std::fill(Hii + 2, Hii + m_n - i, Scalar(0));
}
zero_ind.push_back(m_n);
const Index len = zero_ind.size() - 1;
for (Index i = 0; i < len; i++)
{
const Index start = zero_ind[i];
const Index end = zero_ind[i + 1] - 1;
// Compute refelctors and update each block
update_block(start, end);
}
// Deflation on the computed result
Hii = m_mat_H.data();
for (Index i = 0; i < m_n - 1; i++, Hii += (m_n + 1))
{
const Scalar h = abs(Hii[1]);
const Scalar diag = abs(Hii[0]) + abs(Hii[m_n + 1]);
if (h <= eps_abs || h <= eps_rel * diag)
Hii[1] = 0;
}
m_computed = true;
}
void matrix_QtHQ(Matrix& dest) const
{
if (!m_computed)
throw std::logic_error("DoubleShiftQR: need to call compute() first");
dest.noalias() = m_mat_H;
}
// Q = P0 * P1 * ...
// Q'y = P_{n-2} * ... * P1 * P0 * y
void apply_QtY(Vector& y) const
{
if (!m_computed)
throw std::logic_error("DoubleShiftQR: need to call compute() first");
Scalar* y_ptr = y.data();
const Index n1 = m_n - 1;
for (Index i = 0; i < n1; i++, y_ptr++)
{
apply_PX(y_ptr, i);
}
}
// Q = P0 * P1 * ...
// YQ = Y * P0 * P1 * ...
void apply_YQ(GenericMatrix Y) const
{
if (!m_computed)
throw std::logic_error("DoubleShiftQR: need to call compute() first");
const Index nrow = Y.rows();
const Index n2 = m_n - 2;
for (Index i = 0; i < n2; i++)
{
apply_XP(Y.block(0, i, nrow, 3), nrow, i);
}
apply_XP(Y.block(0, n2, nrow, 2), nrow, n2);
}
};
} // namespace Spectra
#endif // SPECTRA_DOUBLE_SHIFT_QR_H