Files
Aurora/thirdparty/include/Spectra/SymEigsBase.h
2023-06-02 10:49:02 +08:00

454 lines
15 KiB
C++

// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SYM_EIGS_BASE_H
#define SPECTRA_SYM_EIGS_BASE_H
#include <Eigen/Core>
#include <vector> // std::vector
#include <cmath> // std::abs, std::pow
#include <algorithm> // std::min
#include <stdexcept> // std::invalid_argument
#include <utility> // std::move
#include "Util/Version.h"
#include "Util/TypeTraits.h"
#include "Util/SelectionRule.h"
#include "Util/CompInfo.h"
#include "Util/SimpleRandom.h"
#include "MatOp/internal/ArnoldiOp.h"
#include "LinAlg/UpperHessenbergQR.h"
#include "LinAlg/TridiagEigen.h"
#include "LinAlg/Lanczos.h"
namespace Spectra {
///
/// \defgroup EigenSolver Eigen Solvers
///
/// Eigen solvers for different types of problems.
///
///
/// \ingroup EigenSolver
///
/// This is the base class for symmetric eigen solvers, mainly for internal use.
/// It is kept here to provide the documentation for member functions of concrete eigen solvers
/// such as SymEigsSolver and SymEigsShiftSolver.
///
template <typename OpType, typename BOpType>
class SymEigsBase
{
private:
using Scalar = typename OpType::Scalar;
using Index = Eigen::Index;
using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
using Array = Eigen::Array<Scalar, Eigen::Dynamic, 1>;
using BoolArray = Eigen::Array<bool, Eigen::Dynamic, 1>;
using MapMat = Eigen::Map<Matrix>;
using MapVec = Eigen::Map<Vector>;
using MapConstVec = Eigen::Map<const Vector>;
using ArnoldiOpType = ArnoldiOp<Scalar, OpType, BOpType>;
using LanczosFac = Lanczos<Scalar, ArnoldiOpType>;
protected:
// clang-format off
// In SymEigsSolver and SymEigsShiftSolver, the A operator is an lvalue provided by
// the user. In SymGEigsSolver, the A operator is an rvalue. To avoid copying objects,
// we use the following scheme:
// 1. If the op parameter in the constructor is an lvalue, make m_op a const reference to op
// 2. If op is an rvalue, move op to m_op_container, and then make m_op a const
// reference to m_op_container[0]
std::vector<OpType> m_op_container;
const OpType& m_op; // matrix operator for A
const Index m_n; // dimension of matrix A
const Index m_nev; // number of eigenvalues requested
const Index m_ncv; // dimension of Krylov subspace in the Lanczos method
Index m_nmatop; // number of matrix operations called
Index m_niter; // number of restarting iterations
LanczosFac m_fac; // Lanczos factorization
Vector m_ritz_val; // Ritz values
private:
Matrix m_ritz_vec; // Ritz vectors
Vector m_ritz_est; // last row of m_ritz_vec, also called the Ritz estimates
BoolArray m_ritz_conv; // indicator of the convergence of Ritz values
CompInfo m_info; // status of the computation
// clang-format on
// Move rvalue object to the container
static std::vector<OpType> create_op_container(OpType&& rval)
{
std::vector<OpType> container;
container.emplace_back(std::move(rval));
return container;
}
// Implicitly restarted Lanczos factorization
void restart(Index k, SortRule selection)
{
using std::abs;
if (k >= m_ncv)
return;
TridiagQR<Scalar> decomp(m_ncv);
Matrix Q = Matrix::Identity(m_ncv, m_ncv);
// Apply large shifts first
const int nshift = m_ncv - k;
Vector shifts = m_ritz_val.tail(nshift);
std::sort(shifts.data(), shifts.data() + nshift, [](const Scalar& v1, const Scalar& v2) { return abs(v1) > abs(v2); });
for (Index i = 0; i < nshift; i++)
{
// QR decomposition of H-mu*I, mu is the shift
decomp.compute(m_fac.matrix_H(), shifts[i]);
// Q -> Q * Qi
decomp.apply_YQ(Q);
// H -> Q'HQ
// Since QR = H - mu * I, we have H = QR + mu * I
// and therefore Q'HQ = RQ + mu * I
m_fac.compress_H(decomp);
}
m_fac.compress_V(Q);
m_fac.factorize_from(k, m_ncv, m_nmatop);
retrieve_ritzpair(selection);
}
// Calculates the number of converged Ritz values
Index num_converged(const Scalar& tol)
{
using std::pow;
// The machine precision, ~= 1e-16 for the "double" type
constexpr Scalar eps = TypeTraits<Scalar>::epsilon();
// std::pow() is not constexpr, so we do not declare eps23 to be constexpr
// But most compilers should be able to compute eps23 at compile time
const Scalar eps23 = pow(eps, Scalar(2) / 3);
// thresh = tol * max(eps23, abs(theta)), theta for Ritz value
Array thresh = tol * m_ritz_val.head(m_nev).array().abs().max(eps23);
Array resid = m_ritz_est.head(m_nev).array().abs() * m_fac.f_norm();
// Converged "wanted" Ritz values
m_ritz_conv = (resid < thresh);
return m_ritz_conv.count();
}
// Returns the adjusted nev for restarting
Index nev_adjusted(Index nconv)
{
using std::abs;
// A very small value, but 1.0 / near_0 does not overflow
// ~= 1e-307 for the "double" type
constexpr Scalar near_0 = TypeTraits<Scalar>::min() * Scalar(10);
Index nev_new = m_nev;
for (Index i = m_nev; i < m_ncv; i++)
if (abs(m_ritz_est[i]) < near_0)
nev_new++;
// Adjust nev_new, according to dsaup2.f line 677~684 in ARPACK
nev_new += (std::min)(nconv, (m_ncv - nev_new) / 2);
if (nev_new == 1 && m_ncv >= 6)
nev_new = m_ncv / 2;
else if (nev_new == 1 && m_ncv > 2)
nev_new = 2;
if (nev_new > m_ncv - 1)
nev_new = m_ncv - 1;
return nev_new;
}
// Retrieves and sorts Ritz values and Ritz vectors
void retrieve_ritzpair(SortRule selection)
{
TridiagEigen<Scalar> decomp(m_fac.matrix_H());
const Vector& evals = decomp.eigenvalues();
const Matrix& evecs = decomp.eigenvectors();
// Sort Ritz values and put the wanted ones at the beginning
std::vector<Index> ind = argsort(selection, evals, m_ncv);
// Copy the Ritz values and vectors to m_ritz_val and m_ritz_vec, respectively
for (Index i = 0; i < m_ncv; i++)
{
m_ritz_val[i] = evals[ind[i]];
m_ritz_est[i] = evecs(m_ncv - 1, ind[i]);
}
for (Index i = 0; i < m_nev; i++)
{
m_ritz_vec.col(i).noalias() = evecs.col(ind[i]);
}
}
protected:
// Sorts the first nev Ritz pairs in the specified order
// This is used to return the final results
virtual void sort_ritzpair(SortRule sort_rule)
{
if ((sort_rule != SortRule::LargestAlge) && (sort_rule != SortRule::LargestMagn) &&
(sort_rule != SortRule::SmallestAlge) && (sort_rule != SortRule::SmallestMagn))
throw std::invalid_argument("unsupported sorting rule");
std::vector<Index> ind = argsort(sort_rule, m_ritz_val, m_nev);
Vector new_ritz_val(m_ncv);
Matrix new_ritz_vec(m_ncv, m_nev);
BoolArray new_ritz_conv(m_nev);
for (Index i = 0; i < m_nev; i++)
{
new_ritz_val[i] = m_ritz_val[ind[i]];
new_ritz_vec.col(i).noalias() = m_ritz_vec.col(ind[i]);
new_ritz_conv[i] = m_ritz_conv[ind[i]];
}
m_ritz_val.swap(new_ritz_val);
m_ritz_vec.swap(new_ritz_vec);
m_ritz_conv.swap(new_ritz_conv);
}
public:
/// \cond
// If op is an lvalue
SymEigsBase(OpType& op, const BOpType& Bop, Index nev, Index ncv) :
m_op(op),
m_n(op.rows()),
m_nev(nev),
m_ncv(ncv > m_n ? m_n : ncv),
m_nmatop(0),
m_niter(0),
m_fac(ArnoldiOpType(op, Bop), m_ncv),
m_info(CompInfo::NotComputed)
{
if (nev < 1 || nev > m_n - 1)
throw std::invalid_argument("nev must satisfy 1 <= nev <= n - 1, n is the size of matrix");
if (ncv <= nev || ncv > m_n)
throw std::invalid_argument("ncv must satisfy nev < ncv <= n, n is the size of matrix");
}
// If op is an rvalue
SymEigsBase(OpType&& op, const BOpType& Bop, Index nev, Index ncv) :
m_op_container(create_op_container(std::move(op))),
m_op(m_op_container.front()),
m_n(m_op.rows()),
m_nev(nev),
m_ncv(ncv > m_n ? m_n : ncv),
m_nmatop(0),
m_niter(0),
m_fac(ArnoldiOpType(m_op, Bop), m_ncv),
m_info(CompInfo::NotComputed)
{
if (nev < 1 || nev > m_n - 1)
throw std::invalid_argument("nev must satisfy 1 <= nev <= n - 1, n is the size of matrix");
if (ncv <= nev || ncv > m_n)
throw std::invalid_argument("ncv must satisfy nev < ncv <= n, n is the size of matrix");
}
///
/// Virtual destructor
///
virtual ~SymEigsBase() {}
/// \endcond
///
/// Initializes the solver by providing an initial residual vector.
///
/// \param init_resid Pointer to the initial residual vector.
///
/// **Spectra** (and also **ARPACK**) uses an iterative algorithm
/// to find eigenvalues. This function allows the user to provide the initial
/// residual vector.
///
void init(const Scalar* init_resid)
{
// Reset all matrices/vectors to zero
m_ritz_val.resize(m_ncv);
m_ritz_vec.resize(m_ncv, m_nev);
m_ritz_est.resize(m_ncv);
m_ritz_conv.resize(m_nev);
m_ritz_val.setZero();
m_ritz_vec.setZero();
m_ritz_est.setZero();
m_ritz_conv.setZero();
m_nmatop = 0;
m_niter = 0;
// Initialize the Lanczos factorization
MapConstVec v0(init_resid, m_n);
m_fac.init(v0, m_nmatop);
}
///
/// Initializes the solver by providing a random initial residual vector.
///
/// This overloaded function generates a random initial residual vector
/// (with a fixed random seed) for the algorithm. Elements in the vector
/// follow independent Uniform(-0.5, 0.5) distribution.
///
void init()
{
SimpleRandom<Scalar> rng(0);
Vector init_resid = rng.random_vec(m_n);
init(init_resid.data());
}
///
/// Conducts the major computation procedure.
///
/// \param selection An enumeration value indicating the selection rule of
/// the requested eigenvalues, for example `SortRule::LargestMagn`
/// to retrieve eigenvalues with the largest magnitude.
/// The full list of enumeration values can be found in
/// \ref Enumerations.
/// \param maxit Maximum number of iterations allowed in the algorithm.
/// \param tol Precision parameter for the calculated eigenvalues.
/// \param sorting Rule to sort the eigenvalues and eigenvectors.
/// Supported values are
/// `SortRule::LargestAlge`, `SortRule::LargestMagn`,
/// `SortRule::SmallestAlge`, and `SortRule::SmallestMagn`.
/// For example, `SortRule::LargestAlge` indicates that largest eigenvalues
/// come first. Note that this argument is only used to
/// **sort** the final result, and the **selection** rule
/// (e.g. selecting the largest or smallest eigenvalues in the
/// full spectrum) is specified by the parameter `selection`.
///
/// \return Number of converged eigenvalues.
///
Index compute(SortRule selection = SortRule::LargestMagn, Index maxit = 1000,
Scalar tol = 1e-10, SortRule sorting = SortRule::LargestAlge)
{
// The m-step Lanczos factorization
m_fac.factorize_from(1, m_ncv, m_nmatop);
retrieve_ritzpair(selection);
// Restarting
Index i, nconv = 0, nev_adj;
for (i = 0; i < maxit; i++)
{
nconv = num_converged(tol);
if (nconv >= m_nev)
break;
nev_adj = nev_adjusted(nconv);
restart(nev_adj, selection);
}
// Sorting results
sort_ritzpair(sorting);
m_niter += i + 1;
m_info = (nconv >= m_nev) ? CompInfo::Successful : CompInfo::NotConverging;
return (std::min)(m_nev, nconv);
}
///
/// Returns the status of the computation.
/// The full list of enumeration values can be found in \ref Enumerations.
///
CompInfo info() const { return m_info; }
///
/// Returns the number of iterations used in the computation.
///
Index num_iterations() const { return m_niter; }
///
/// Returns the number of matrix operations used in the computation.
///
Index num_operations() const { return m_nmatop; }
///
/// Returns the converged eigenvalues.
///
/// \return A vector containing the eigenvalues.
/// Returned vector type will be `Eigen::Vector<Scalar, ...>`, depending on
/// the template parameter `Scalar` defined.
///
Vector eigenvalues() const
{
const Index nconv = m_ritz_conv.count();
Vector res(nconv);
if (!nconv)
return res;
Index j = 0;
for (Index i = 0; i < m_nev; i++)
{
if (m_ritz_conv[i])
{
res[j] = m_ritz_val[i];
j++;
}
}
return res;
}
///
/// Returns the eigenvectors associated with the converged eigenvalues.
///
/// \param nvec The number of eigenvectors to return.
///
/// \return A matrix containing the eigenvectors.
/// Returned matrix type will be `Eigen::Matrix<Scalar, ...>`,
/// depending on the template parameter `Scalar` defined.
///
virtual Matrix eigenvectors(Index nvec) const
{
const Index nconv = m_ritz_conv.count();
nvec = (std::min)(nvec, nconv);
Matrix res(m_n, nvec);
if (!nvec)
return res;
Matrix ritz_vec_conv(m_ncv, nvec);
Index j = 0;
for (Index i = 0; i < m_nev && j < nvec; i++)
{
if (m_ritz_conv[i])
{
ritz_vec_conv.col(j).noalias() = m_ritz_vec.col(i);
j++;
}
}
res.noalias() = m_fac.matrix_V() * ritz_vec_conv;
return res;
}
///
/// Returns all converged eigenvectors.
///
virtual Matrix eigenvectors() const
{
return eigenvectors(m_nev);
}
};
} // namespace Spectra
#endif // SPECTRA_SYM_EIGS_BASE_H