172 lines
6.1 KiB
C++
172 lines
6.1 KiB
C++
// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef SPECTRA_LANCZOS_H
|
|
#define SPECTRA_LANCZOS_H
|
|
|
|
#include <Eigen/Core>
|
|
#include <cmath> // std::sqrt
|
|
#include <utility> // std::forward
|
|
#include <stdexcept> // std::invalid_argument
|
|
|
|
#include "Arnoldi.h"
|
|
|
|
namespace Spectra {
|
|
|
|
// Lanczos factorization A * V = V * H + f * e'
|
|
// A: n x n
|
|
// V: n x k
|
|
// H: k x k
|
|
// f: n x 1
|
|
// e: [0, ..., 0, 1]
|
|
// V and H are allocated of dimension m, so the maximum value of k is m
|
|
template <typename Scalar, typename ArnoldiOpType>
|
|
class Lanczos : public Arnoldi<Scalar, ArnoldiOpType>
|
|
{
|
|
private:
|
|
using Index = Eigen::Index;
|
|
using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
|
|
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
|
|
using MapMat = Eigen::Map<Matrix>;
|
|
using MapVec = Eigen::Map<Vector>;
|
|
using MapConstMat = Eigen::Map<const Matrix>;
|
|
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_op;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_n;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_m;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_k;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_fac_V;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_fac_H;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_fac_f;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_beta;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_near_0;
|
|
using Arnoldi<Scalar, ArnoldiOpType>::m_eps;
|
|
|
|
public:
|
|
// Forward parameter `op` to the constructor of Arnoldi
|
|
template <typename T>
|
|
Lanczos(T&& op, Index m) :
|
|
Arnoldi<Scalar, ArnoldiOpType>(std::forward<T>(op), m)
|
|
{}
|
|
|
|
// Lanczos factorization starting from step-k
|
|
void factorize_from(Index from_k, Index to_m, Index& op_counter) override
|
|
{
|
|
using std::sqrt;
|
|
|
|
if (to_m <= from_k)
|
|
return;
|
|
|
|
if (from_k > m_k)
|
|
{
|
|
std::string msg = "Lanczos: from_k (= " + std::to_string(from_k) +
|
|
") is larger than the current subspace dimension (= " + std::to_string(m_k) + ")";
|
|
throw std::invalid_argument(msg);
|
|
}
|
|
|
|
const Scalar beta_thresh = m_eps * sqrt(Scalar(m_n));
|
|
|
|
// Pre-allocate vectors
|
|
Vector Vf(to_m);
|
|
Vector w(m_n);
|
|
|
|
// Keep the upperleft k x k submatrix of H and set other elements to 0
|
|
m_fac_H.rightCols(m_m - from_k).setZero();
|
|
m_fac_H.block(from_k, 0, m_m - from_k, from_k).setZero();
|
|
|
|
for (Index i = from_k; i <= to_m - 1; i++)
|
|
{
|
|
bool restart = false;
|
|
// If beta = 0, then the next V is not full rank
|
|
// We need to generate a new residual vector that is orthogonal
|
|
// to the current V, which we call a restart
|
|
if (m_beta < m_near_0)
|
|
{
|
|
MapConstMat V(m_fac_V.data(), m_n, i); // The first i columns
|
|
this->expand_basis(V, 2 * i, m_fac_f, m_beta, op_counter);
|
|
restart = true;
|
|
}
|
|
|
|
// v <- f / ||f||
|
|
MapVec v(&m_fac_V(0, i), m_n); // The (i+1)-th column
|
|
v.noalias() = m_fac_f / m_beta;
|
|
|
|
// Note that H[i+1, i] equals to the unrestarted beta
|
|
m_fac_H(i, i - 1) = restart ? Scalar(0) : m_beta;
|
|
m_fac_H(i - 1, i) = m_fac_H(i, i - 1); // Due to symmetry
|
|
|
|
// w <- A * v
|
|
m_op.perform_op(v.data(), w.data());
|
|
op_counter++;
|
|
|
|
// f <- w - V * V'Bw = w - H[i+1, i] * V{i} - H[i+1, i+1] * V{i+1}
|
|
// If restarting, we know that H[i+1, i] = 0
|
|
// First do w <- w - H[i+1, i] * V{i}, see the discussions in Section 2.3 of
|
|
// Cullum and Willoughby (2002). Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Vol. 1
|
|
if (!restart)
|
|
w.noalias() -= m_fac_H(i, i - 1) * m_fac_V.col(i - 1);
|
|
|
|
// H[i+1, i+1] = <v, w> = v'Bw
|
|
m_fac_H(i, i) = m_op.inner_product(v, w);
|
|
|
|
// f <- w - H[i+1, i+1] * V{i+1}
|
|
m_fac_f.noalias() = w - m_fac_H(i, i) * v;
|
|
m_beta = m_op.norm(m_fac_f);
|
|
|
|
// f/||f|| is going to be the next column of V, so we need to test
|
|
// whether V'B(f/||f||) ~= 0
|
|
const Index i1 = i + 1;
|
|
MapMat Vs(m_fac_V.data(), m_n, i1); // The first (i+1) columns
|
|
m_op.trans_product(Vs, m_fac_f, Vf.head(i1));
|
|
Scalar ortho_err = Vf.head(i1).cwiseAbs().maxCoeff();
|
|
// If not, iteratively correct the residual
|
|
int count = 0;
|
|
while (count < 5 && ortho_err > m_eps * m_beta)
|
|
{
|
|
// There is an edge case: when beta=||f|| is close to zero, f mostly consists
|
|
// of noises of rounding errors, so the test [ortho_err < eps * beta] is very
|
|
// likely to fail. In particular, if beta=0, then the test is ensured to fail.
|
|
// Hence when this happens, we force f to be zero, and then restart in the
|
|
// next iteration.
|
|
if (m_beta < beta_thresh)
|
|
{
|
|
m_fac_f.setZero();
|
|
m_beta = Scalar(0);
|
|
break;
|
|
}
|
|
|
|
// f <- f - V * Vf
|
|
m_fac_f.noalias() -= Vs * Vf.head(i1);
|
|
// h <- h + Vf
|
|
m_fac_H(i - 1, i) += Vf[i - 1];
|
|
m_fac_H(i, i - 1) = m_fac_H(i - 1, i);
|
|
m_fac_H(i, i) += Vf[i];
|
|
// beta <- ||f||
|
|
m_beta = m_op.norm(m_fac_f);
|
|
|
|
m_op.trans_product(Vs, m_fac_f, Vf.head(i1));
|
|
ortho_err = Vf.head(i1).cwiseAbs().maxCoeff();
|
|
count++;
|
|
}
|
|
}
|
|
|
|
// Indicate that this is a step-m factorization
|
|
m_k = to_m;
|
|
}
|
|
|
|
// Apply H -> Q'HQ, where Q is from a tridiagonal QR decomposition
|
|
// Function overloading here, not overriding
|
|
void compress_H(const TridiagQR<Scalar>& decomp)
|
|
{
|
|
decomp.matrix_QtHQ(m_fac_H);
|
|
m_k--;
|
|
}
|
|
};
|
|
|
|
} // namespace Spectra
|
|
|
|
#endif // SPECTRA_LANCZOS_H
|