565 lines
22 KiB
C++
565 lines
22 KiB
C++
#include "Matrix.h"
|
||
|
||
#include <string>
|
||
#include <cstring>
|
||
#include <iostream>
|
||
#include <complex>
|
||
//必须在mkl.h和Eigen的头之前,<complex>之后
|
||
#define MKL_Complex16 std::complex<double>
|
||
#include "mkl.h"
|
||
|
||
#include "Function.h"
|
||
namespace Aurora{
|
||
typedef void(*CalcFuncD)(const MKL_INT n, const double a[], const MKL_INT inca, const double b[],
|
||
const MKL_INT incb, double r[], const MKL_INT incr);
|
||
|
||
typedef void(*CalcFuncZ)(const MKL_INT n, const MKL_Complex16 a[], const MKL_INT inca, const MKL_Complex16 b[],
|
||
const MKL_INT incb, MKL_Complex16 r[], const MKL_INT incr);
|
||
|
||
inline Matrix operatorMxA(CalcFuncD aFunc, double aScalar, const Matrix &aMatrix) {
|
||
double *output = malloc(aMatrix.getDataSize(), aMatrix.getValueType() == Complex);
|
||
aFunc(aMatrix.getDataSize(), aMatrix.getData(), 1, &aScalar, 0, output, 1);
|
||
if (aMatrix.getValueType() == Complex) {
|
||
aFunc(aMatrix.getDataSize(), aMatrix.getData() + 1, 1, &aScalar, 0, output + 1,
|
||
1);
|
||
}
|
||
return Matrix::New(output, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2),
|
||
aMatrix.getValueType());
|
||
}
|
||
|
||
inline Matrix operatorMxM(CalcFuncD aFuncD, CalcFuncZ aFuncZ, const Matrix &aMatrix,
|
||
const Matrix &aOther) {
|
||
if (!aMatrix.compareShape(aOther))return Matrix();
|
||
if (aMatrix.getValueType() != aOther.getValueType()) {
|
||
double *output = malloc(aMatrix.getDataSize(), true);
|
||
if (aMatrix.getValueType() == Complex) {
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData(), 1,
|
||
output, 1);
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData() + 1, 1, aOther.getData(), 1,
|
||
output + 1,
|
||
1);
|
||
return Matrix::New(output, aMatrix);
|
||
}
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData(), 1, output,
|
||
1);
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + 1, 1,
|
||
output + 1, 1);
|
||
return Matrix::New(output, aOther);
|
||
} else if (aMatrix.getValueType() == Normal) {
|
||
double *output = malloc(aMatrix.getDataSize());
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData(), 1, output,
|
||
1);
|
||
return Matrix::New(output, aMatrix);
|
||
} else {
|
||
double *output = malloc(aMatrix.getDataSize(), true);
|
||
aFuncZ(aMatrix.getDataSize(), (std::complex<double> *) aMatrix.getData(), 1,
|
||
(std::complex<double> *) aOther.getData(), 1, (std::complex<double> *) output, 1);
|
||
return Matrix::New(output, aOther);
|
||
}
|
||
}
|
||
|
||
inline Matrix &operatorMxA_RR(CalcFuncD aFunc, double aScalar, Aurora::Matrix &&aMatrix) {
|
||
std::cout << "use right ref operation" << std::endl;
|
||
std::cout << "before operation" << std::endl;
|
||
aMatrix.printf();
|
||
if (aMatrix.getValueType() == Complex) {
|
||
aFunc(aMatrix.getDataSize(), aMatrix.getData(), 1, &aScalar, 0,
|
||
aMatrix.getData(),
|
||
1);
|
||
aFunc(aMatrix.getDataSize(), aMatrix.getData() + 1, 1, &aScalar, 0,
|
||
aMatrix.getData() + 1, 1);
|
||
} else {
|
||
aFunc(aMatrix.getDataSize(), aMatrix.getData(), 1, &aScalar, 0,
|
||
aMatrix.getData(),
|
||
1);
|
||
}
|
||
std::cout << "after operation" << std::endl;
|
||
aMatrix.printf();
|
||
return aMatrix;
|
||
}
|
||
|
||
inline Matrix operatorMxM_RR(CalcFuncD aFuncD, CalcFuncZ aFuncZ, const Aurora::Matrix &aMatrix,
|
||
Aurora::Matrix &&aOther) {
|
||
if (!aMatrix.compareShape(aOther))return Matrix();
|
||
std::cout << "use right ref operation m" << std::endl;
|
||
if (aMatrix.getValueType() != aOther.getValueType()) {
|
||
//aOther is not a complex matrix
|
||
if (aMatrix.getValueType() == Complex) {
|
||
double *output = malloc(aMatrix.getDataSize(), true);
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData(), 1,
|
||
output, 1);
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData() + 1,1, aOther.getData(), 1,
|
||
output + 1,
|
||
1);
|
||
return Matrix::New(output, aOther);
|
||
}
|
||
//aOther is a complex matrix, use aOther as output
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(),1, aOther.getData(), 1,
|
||
aOther.getData(),
|
||
1);
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + 1, 1,
|
||
aOther.getData() + 1, 1);
|
||
return aOther;
|
||
} else if (aMatrix.getValueType() == Normal) {
|
||
aFuncD(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData(), 1,
|
||
aOther.getData(),
|
||
1);
|
||
return aOther;
|
||
} else {
|
||
aFuncZ(aMatrix.getDataSize(), (std::complex<double> *) aMatrix.getData(), 1,
|
||
(std::complex<double> *) aOther.getData(), 1, (std::complex<double> *) aOther.getData(), 1);
|
||
return aOther;
|
||
}
|
||
}
|
||
};
|
||
|
||
|
||
namespace Aurora {
|
||
Matrix::Matrix(std::shared_ptr<double> aData, std::vector<int> aInfo)
|
||
: mData(aData), mInfo(aInfo) {
|
||
}
|
||
|
||
Matrix::Matrix(const Matrix::MatrixSlice& slice) {
|
||
auto temp = slice.toMatrix();
|
||
this->mData = temp.mData;
|
||
this->mInfo = temp.mInfo;
|
||
this->mValueType = temp.mValueType;
|
||
}
|
||
|
||
bool Matrix::isNull() const {
|
||
return !mData || mInfo.empty();
|
||
}
|
||
|
||
int Matrix::getDims() const {
|
||
return mInfo.size();
|
||
}
|
||
|
||
double *Matrix::getData() const {
|
||
return mData.get();
|
||
}
|
||
|
||
int Matrix::getDimSize(int aIndex) const {
|
||
if (aIndex >= 0 && aIndex < 3 && aIndex < getDims()) {
|
||
return mInfo.at(aIndex);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
size_t Matrix::getDataSize() const {
|
||
if (!mData.get())return 0;
|
||
size_t ret = 1;
|
||
for (auto v: mInfo) {
|
||
ret *= v;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
|
||
bool Matrix::compareShape(const Matrix &other) const {
|
||
if (mInfo.size() != other.mInfo.size()) return false;
|
||
for (int i = 0; i < mInfo.size(); ++i) {
|
||
if (mInfo[i] != other.mInfo[i]) return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
Matrix Matrix::getDataFromDims2(int aColumn) {
|
||
if (2 != getDims() || aColumn > mInfo.back()) {
|
||
return Matrix();
|
||
}
|
||
|
||
int rows = mInfo.at(0);
|
||
std::shared_ptr<double> resultData = std::shared_ptr<double>(new double[rows], std::default_delete<double[]>());
|
||
std::copy(mData.get() + (aColumn - 1) * rows, mData.get() + aColumn * rows, resultData.get());
|
||
std::vector<int> resultInfo = {rows};
|
||
Matrix result(resultData, resultInfo);
|
||
return result;
|
||
}
|
||
|
||
Matrix Matrix::getDataFromDims1(int aRow) {
|
||
if (1 != getDims() || aRow > mInfo.back()) {
|
||
return Matrix();
|
||
}
|
||
std::shared_ptr<double> resultData = std::shared_ptr<double>(new double[1], std::default_delete<double[]>());
|
||
resultData.get()[0] = mData.get()[aRow - 1];
|
||
std::vector<int> resultInfo{1};
|
||
Matrix result(resultData, resultInfo);
|
||
return result;
|
||
}
|
||
|
||
Matrix Matrix::New(double *data, int rows, int cols, int slices, ValueType type) {
|
||
if (!data) return Matrix();
|
||
std::vector<int> vector;
|
||
vector.push_back(rows);
|
||
if (cols > 0)vector.push_back(cols);
|
||
if (slices > 0)vector.push_back(slices);
|
||
Matrix ret({data, free}, vector);
|
||
if (type != Normal)ret.setValueType(type);
|
||
return ret;
|
||
}
|
||
|
||
Matrix Matrix::New(double *data, const Matrix &shapeMatrix) {
|
||
return New(data,
|
||
shapeMatrix.getDimSize(0),
|
||
shapeMatrix.getDimSize(1),
|
||
shapeMatrix.getDimSize(2),
|
||
shapeMatrix.getValueType());
|
||
}
|
||
|
||
|
||
Matrix Matrix::New(const Matrix &shapeMatrix) {
|
||
double *newBuffer = malloc(shapeMatrix.getDataSize(), shapeMatrix.getValueType());
|
||
return New(newBuffer, shapeMatrix);
|
||
}
|
||
|
||
Matrix Matrix::deepCopy() const {
|
||
double *newBuffer = malloc(getDataSize(), getValueType());
|
||
memcpy(newBuffer, getData(), sizeof(double) * getDataSize() * getValueType());
|
||
return New(newBuffer,
|
||
getDimSize(0),
|
||
getDimSize(1),
|
||
getDimSize(2),
|
||
getValueType());
|
||
}
|
||
|
||
//operation +
|
||
Matrix Matrix::operator+(double aScalar) const { return operatorMxA(&vdAddI, aScalar, *this);}
|
||
Matrix operator+(double aScalar, const Matrix &matrix) {return matrix + aScalar;}
|
||
Matrix Matrix::operator+(const Matrix &matrix) const {return operatorMxM(vdAddI, vzAddI, *this, matrix);}
|
||
Matrix &operator+(double aScalar, Matrix &&matrix) {
|
||
return operatorMxA_RR(&vdAddI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix &operator+(Matrix &&matrix,double aScalar) {
|
||
return operatorMxA_RR(&vdAddI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix Matrix::operator+(Matrix &&aMatrix) const {
|
||
return operatorMxM_RR(&vdAddI,&vzAddI,*this,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
Matrix operator+(Matrix &&aMatrix, const Matrix &aOther) {
|
||
return operatorMxM_RR(&vdAddI,&vzAddI,aOther,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
|
||
//operation -
|
||
Matrix Matrix::operator-(double aScalar) const { return operatorMxA(&vdSubI, aScalar, *this);}
|
||
Matrix operator-(double aScalar, const Matrix &matrix) {return matrix - aScalar;}
|
||
Matrix Matrix::operator-(const Matrix &matrix) const {return operatorMxM(vdSubI, vzSubI, *this, matrix);}
|
||
Matrix &operator-(double aScalar, Matrix &&matrix) {
|
||
return operatorMxA_RR(&vdSubI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix &operator-(Matrix &&matrix,double aScalar) {
|
||
return operatorMxA_RR(&vdSubI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix Matrix::operator-(Matrix &&aMatrix) const {
|
||
return operatorMxM_RR(&vdSubI,&vzSubI,*this,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
Matrix operator-(Matrix &&aMatrix, const Matrix &aOther) {
|
||
return operatorMxM_RR(&vdSubI,&vzSubI,aOther,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
|
||
//operation *
|
||
Matrix Matrix::operator*(double aScalar) const { return operatorMxA(&vdMulI, aScalar, *this);}
|
||
Matrix operator*(double aScalar, const Matrix &matrix) {return matrix * aScalar;}
|
||
Matrix Matrix::operator*(const Matrix &matrix) const {return operatorMxM(vdMulI, vzMulI, *this, matrix);}
|
||
Matrix &operator*(double aScalar, Matrix &&matrix) {
|
||
return operatorMxA_RR(&vdMulI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix &operator*(Matrix &&matrix,double aScalar) {
|
||
return operatorMxA_RR(&vdMulI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix Matrix::operator*(Matrix &&aMatrix) const {
|
||
return operatorMxM_RR(&vdMulI,&vzMulI,*this,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
Matrix operator*(Matrix &&aMatrix, const Matrix &aOther) {
|
||
return operatorMxM_RR(&vdMulI,&vzMulI,aOther,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
|
||
//operation /
|
||
Matrix Matrix::operator/(double aScalar) const { return operatorMxA(&vdDivI, aScalar, *this);}
|
||
Matrix operator/(double aScalar, const Matrix &matrix) {return matrix / aScalar;}
|
||
Matrix Matrix::operator/(const Matrix &matrix) const {return operatorMxM(vdDivI, vzDivI, *this, matrix);}
|
||
Matrix &operator/(double aScalar, Matrix &&matrix) {
|
||
return operatorMxA_RR(&vdDivI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix &operator/(Matrix &&matrix,double aScalar) {
|
||
return operatorMxA_RR(&vdDivI,aScalar, std::forward<Matrix&&>(matrix));
|
||
}
|
||
Matrix Matrix::operator/(Matrix &&aMatrix) const {
|
||
return operatorMxM_RR(&vdDivI,&vzDivI,*this,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
Matrix operator/(Matrix &&aMatrix, const Matrix &aOther) {
|
||
return operatorMxM_RR(&vdDivI,&vzDivI,aOther,std::forward<Matrix&&>(aMatrix));
|
||
}
|
||
|
||
//operator ^ (pow)
|
||
Matrix Matrix::operator^(int times) const { return operatorMxA(&vdPowI, times, *this);}
|
||
Matrix operator^( Matrix &&matrix,int times) {
|
||
return operatorMxA(&vdPowI, times, std::forward<Matrix&&>(matrix));
|
||
}
|
||
|
||
|
||
|
||
|
||
void Matrix::printf() {
|
||
int k_count = getDimSize(2)==0?1:getDimSize(2);
|
||
int j_count = getDimSize(1)==0?1:getDimSize(1);
|
||
for (int k = 0; k <k_count; ++k) {
|
||
::printf("slice %d:\r\n[",k);
|
||
for (int i = 0; i < getDimSize(0); ++i) {
|
||
::printf("[");
|
||
for (int j = 0; j < j_count; ++j) {
|
||
::printf("%f2, ",getData()[k*getDimSize(1)*getDimSize(0)+j*getDimSize(0)+i]);
|
||
}
|
||
::printf("]\r\n");
|
||
}
|
||
::printf("]\r\n");
|
||
}
|
||
}
|
||
|
||
Matrix::MatrixSlice Matrix::operator()(int aRowIdx, int aColIdx, int aSliceIdx) const {
|
||
std::vector<int> dims = {aRowIdx, aColIdx, aSliceIdx};
|
||
std::vector<int> allDimIndex;
|
||
int mode = 0;
|
||
for (int j = 0; j < 3; ++j) {
|
||
if (dims[j]==$ && this->getDims()>j){
|
||
++mode;
|
||
allDimIndex.push_back(j);
|
||
}
|
||
}
|
||
int rowStride = 1;
|
||
int colStride = getDimSize(0);
|
||
int sliceStride = getDimSize(0)*getDimSize(1);
|
||
int strides[3] = {rowStride, colStride, sliceStride};
|
||
int rowOffset = aRowIdx == $ ? 0 : aRowIdx;
|
||
int colOffset = aColIdx == $ ? 0 : aColIdx;
|
||
int sliceOffset = aSliceIdx == $ ? 0 : aSliceIdx;
|
||
double *startPointer = getData() + (rowStride * rowOffset
|
||
+ colStride * colOffset
|
||
+ sliceStride * sliceOffset) * getValueType();
|
||
int size1 = allDimIndex.empty()?1:getDimSize(allDimIndex[0]);
|
||
int stride1 = allDimIndex.empty()?1:strides[allDimIndex[0]];
|
||
switch (mode) {
|
||
//matrix mode
|
||
case 2:{
|
||
int size2 = getDimSize(allDimIndex[1]);
|
||
int stride2 = strides[allDimIndex[1]];
|
||
return Matrix::MatrixSlice(size1, stride1, startPointer, getValueType(), mode, size2, stride2);
|
||
}
|
||
//vector mode & default
|
||
case 1:
|
||
{
|
||
return Matrix::MatrixSlice(size1, stride1, startPointer, getValueType(), mode);
|
||
}
|
||
//scalar mode or ALL $
|
||
case 0:
|
||
default: {
|
||
return Matrix::MatrixSlice(1 , 1, startPointer,getValueType(), mode);
|
||
}
|
||
}
|
||
}
|
||
|
||
Matrix::MatrixSlice::MatrixSlice(int aSize,int aStride, double* aData, ValueType aType, int aSliceMode,int aSize2, int aStride2):
|
||
mSliceMode(aSliceMode),mData(aData),
|
||
mSize(aSize),mSize2(aSize2),
|
||
mStride(aStride),mStride2(aStride2),
|
||
mType(aType)
|
||
{
|
||
|
||
}
|
||
|
||
Matrix::MatrixSlice &Matrix::MatrixSlice::operator=(const Matrix::MatrixSlice &slice) {
|
||
if (this==&slice) return *this;
|
||
if(!mData){
|
||
std::cerr <<"Assign value fail!Des data pointer is null!";
|
||
return *this;
|
||
}
|
||
if(!slice.mData){
|
||
std::cerr <<"Assign value fail!Src data pointer is null!";
|
||
return *this;
|
||
}
|
||
if (slice.mSliceMode!=mSliceMode) {
|
||
std::cerr <<"Assign value fail!Src slice(dims count:"<< slice.mSliceMode <<"), not match of des(dims count:"<<mSliceMode<<")!";
|
||
return *this;
|
||
}
|
||
if (slice.mSize!=mSize) {
|
||
std::cerr <<"Assign value fail!Src slice(dim 1 size:"<< slice.mSize <<"), not match of des(dim 1 size:"<<mSize<<")!";
|
||
return *this;
|
||
}
|
||
if (slice.mSize2!=mSize2) {
|
||
std::cerr <<"Assign value fail!Src slice(dim 2 size:"<< slice.mSize2 <<"), not match of des(dim 2 size:"<<mSize2<<")!";
|
||
return *this;
|
||
}
|
||
if (slice.mType!=mType) {
|
||
std::cerr <<"Assign value fail!Src slice(value type:"<< slice.mType <<"), not match of des(value type:"<<mType<<")!";
|
||
return *this;
|
||
}
|
||
switch (mSliceMode) {
|
||
case 2:{
|
||
if (mType== Normal) {
|
||
cblas_dcopy_batch_strided(mSize, slice.mData, slice.mStride, slice.mStride2, mData, mStride,
|
||
mStride2, mSize2);
|
||
}
|
||
else {
|
||
cblas_zcopy_batch_strided(mSize,(std::complex<double>*)slice.mData,slice.mStride,slice.mStride2,
|
||
(std::complex<double>*)mData,mStride,mStride2,mSize2);
|
||
}
|
||
break;
|
||
}
|
||
case 1:{
|
||
if (mType== Normal){
|
||
cblas_dcopy(mSize,slice.mData,slice.mStride,mData,mStride);
|
||
}
|
||
else {
|
||
cblas_zcopy(mSize, (std::complex<double> *) slice.mData, slice.mStride,
|
||
(std::complex<double> *) mData, mStride);
|
||
}
|
||
break;
|
||
}
|
||
case 0:
|
||
default:{
|
||
mData[0] = slice.mData[0];
|
||
if (mType != Normal)mData[1] = slice.mData[1];
|
||
}
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Matrix::MatrixSlice &Matrix::MatrixSlice::operator=(const Matrix &matrix) {
|
||
if(!mData){
|
||
std::cerr <<"Assign value fail!Des data pointer is null!";
|
||
return *this;
|
||
}
|
||
if(!matrix.getData()){
|
||
std::cerr <<"Assign value fail!Src data pointer is null!";
|
||
return *this;
|
||
}
|
||
if (matrix.getDims()!=mSliceMode) {
|
||
std::cerr <<"Assign value fail!Src matrix(dims count:"<< matrix.getDims() <<"), not match of des(dims count:"<<mSliceMode<<")!";
|
||
return *this;
|
||
}
|
||
if (matrix.getDimSize(0)!=mSize) {
|
||
std::cerr <<"Assign value fail!Src matrix(dim 1 size:"<< matrix.getDimSize(0)<<"), not match of des(dim 1 size:"<<mSize<<")!";
|
||
return *this;
|
||
}
|
||
if (matrix.getDimSize(1)!=mSize2) {
|
||
std::cerr <<"Assign value fail!Src slice(dim 2 size:"<< matrix.getDimSize(1) <<"), not match of des(dim 2 size:"<<mSize2<<")!";
|
||
return *this;
|
||
}
|
||
if (matrix.getValueType()!=mType) {
|
||
std::cerr <<"Assign value fail!Src slice(value type:"<< matrix.getValueType() <<"), not match of des(value type:"<<mType<<")!";
|
||
return *this;
|
||
}
|
||
switch (mSliceMode) {
|
||
case 2:{
|
||
if (mType== Normal) {
|
||
cblas_dcopy_batch_strided(mSize, matrix.getData(), 1, matrix.getDimSize(0), mData, mStride,
|
||
mStride2, mSize2);
|
||
}
|
||
else {
|
||
cblas_zcopy_batch_strided(mSize,(std::complex<double>*)matrix.getData(),1,matrix.getDimSize(0),
|
||
(std::complex<double>*)mData,mStride,mStride2,mSize2);
|
||
}
|
||
break;
|
||
}
|
||
case 1:{
|
||
if (mType== Normal){
|
||
cblas_dcopy(mSize,matrix.getData(),1,mData,mStride);
|
||
}
|
||
else {
|
||
cblas_zcopy(mSize, (std::complex<double> *) matrix.getData(),1,
|
||
(std::complex<double> *) mData, mStride);
|
||
}
|
||
break;
|
||
}
|
||
case 0:
|
||
default:{
|
||
mData[0] = matrix.getData()[0];
|
||
if (mType != Normal)mData[1] = matrix.getData()[1];
|
||
}
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Matrix::MatrixSlice &Matrix::MatrixSlice::operator=(double value) {
|
||
if(!mData){
|
||
std::cerr <<"Assign value fail!Des data pointer is null!";
|
||
return *this;
|
||
}
|
||
if (mSliceMode!=0) {
|
||
std::cerr <<"Assign value fail!Des slicemode is"<<mSliceMode<<", not scalar mode!";
|
||
return *this;
|
||
}
|
||
if (mSize!=1) {
|
||
std::cerr <<"Assign value fail!Des size:"<<mSize<<", not scalar mode!";
|
||
return *this;
|
||
}
|
||
if (mType!=Normal) {
|
||
std::cerr <<"Assign value fail!Des type is complex!";
|
||
return *this;
|
||
}
|
||
mData[0]=value;
|
||
return *this;
|
||
}
|
||
|
||
Matrix::MatrixSlice &Matrix::MatrixSlice::operator=(std::complex<double> value) {
|
||
if(!mData){
|
||
std::cerr <<"Assign value fail!Des data pointer is null!";
|
||
return *this;
|
||
}
|
||
if (mSliceMode!=0) {
|
||
std::cerr <<"Assign value fail!Des slicemode is"<<mSliceMode<<", not scalar mode!";
|
||
return *this;
|
||
}
|
||
if (mSize!=1) {
|
||
std::cerr <<"Assign value fail!Des size:"<<mSize<<", not scalar mode!";
|
||
return *this;
|
||
}
|
||
if (mType!=Complex) {
|
||
std::cerr <<"Assign value fail!Des type is not complex!";
|
||
return *this;
|
||
}
|
||
mData[0]=value.real();
|
||
mData[1]=value.imag();
|
||
return *this;
|
||
}
|
||
|
||
Matrix Matrix::MatrixSlice::toMatrix() const {
|
||
double * data = (double *) mkl_malloc(mSize*(mSize2>0?mSize2:1) * sizeof(double)*mType, 64);
|
||
|
||
switch (mSliceMode) {
|
||
case 2:{
|
||
if (mType== Normal) {
|
||
cblas_dcopy_batch_strided(mSize, mData, mStride,
|
||
mStride2,data, 1, mSize, mSize2);
|
||
}
|
||
else {
|
||
cblas_zcopy_batch_strided(mSize, (std::complex<double> *) mData, mStride, mStride2,
|
||
(std::complex<double> *) data, 1, mSize,
|
||
mSize2);
|
||
}
|
||
break;
|
||
}
|
||
case 1:{
|
||
if (mType== Normal){
|
||
cblas_dcopy(mSize,mData,mStride,data,1);
|
||
}
|
||
else {
|
||
cblas_zcopy(mSize, (std::complex<double> *) mData, mStride,
|
||
(std::complex<double> *) data, 1);
|
||
}
|
||
break;
|
||
}
|
||
case 0:
|
||
default:{
|
||
data[0]= mData[0];
|
||
if (mType != Normal) data[1] = mData[1];
|
||
}
|
||
}
|
||
|
||
return Matrix::New(data,mSize,mSize2,0,mType);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|