// Copyright (C) 2018-2022 Yixuan Qiu // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at https://mozilla.org/MPL/2.0/. #ifndef SPECTRA_GEN_EIGS_BASE_H #define SPECTRA_GEN_EIGS_BASE_H #include #include // std::vector #include // std::abs, std::pow, std::sqrt #include // std::min, std::copy #include // std::complex, std::conj, std::norm, std::abs #include // std::invalid_argument #include "Util/Version.h" #include "Util/TypeTraits.h" #include "Util/SelectionRule.h" #include "Util/CompInfo.h" #include "Util/SimpleRandom.h" #include "MatOp/internal/ArnoldiOp.h" #include "LinAlg/UpperHessenbergQR.h" #include "LinAlg/DoubleShiftQR.h" #include "LinAlg/UpperHessenbergEigen.h" #include "LinAlg/Arnoldi.h" namespace Spectra { /// /// \ingroup EigenSolver /// /// This is the base class for general eigen solvers, mainly for internal use. /// It is kept here to provide the documentation for member functions of concrete eigen solvers /// such as GenEigsSolver and GenEigsRealShiftSolver. /// template class GenEigsBase { private: using Scalar = typename OpType::Scalar; using Index = Eigen::Index; using Matrix = Eigen::Matrix; using Vector = Eigen::Matrix; using Array = Eigen::Array; using BoolArray = Eigen::Array; using MapMat = Eigen::Map; using MapVec = Eigen::Map; using MapConstVec = Eigen::Map; using Complex = std::complex; using ComplexMatrix = Eigen::Matrix; using ComplexVector = Eigen::Matrix; using ArnoldiOpType = ArnoldiOp; using ArnoldiFac = Arnoldi; protected: // clang-format off OpType& m_op; // object to conduct matrix operation, // e.g. matrix-vector product const Index m_n; // dimension of matrix A const Index m_nev; // number of eigenvalues requested const Index m_ncv; // dimension of Krylov subspace in the Arnoldi method Index m_nmatop; // number of matrix operations called Index m_niter; // number of restarting iterations ArnoldiFac m_fac; // Arnoldi factorization ComplexVector m_ritz_val; // Ritz values ComplexMatrix m_ritz_vec; // Ritz vectors ComplexVector m_ritz_est; // last row of m_ritz_vec, also called the Ritz estimates private: BoolArray m_ritz_conv; // indicator of the convergence of Ritz values CompInfo m_info; // status of the computation // clang-format on // Real Ritz values calculated from UpperHessenbergEigen have exact zero imaginary part // Complex Ritz values have exact conjugate pairs // So we use exact tests here static bool is_complex(const Complex& v) { return v.imag() != Scalar(0); } static bool is_conj(const Complex& v1, const Complex& v2) { return v1 == Eigen::numext::conj(v2); } // Implicitly restarted Arnoldi factorization void restart(Index k, SortRule selection) { using std::norm; if (k >= m_ncv) return; DoubleShiftQR decomp_ds(m_ncv); UpperHessenbergQR decomp_hb(m_ncv); Matrix Q = Matrix::Identity(m_ncv, m_ncv); for (Index i = k; i < m_ncv; i++) { if (is_complex(m_ritz_val[i]) && is_conj(m_ritz_val[i], m_ritz_val[i + 1])) { // H - mu * I = Q1 * R1 // H <- R1 * Q1 + mu * I = Q1' * H * Q1 // H - conj(mu) * I = Q2 * R2 // H <- R2 * Q2 + conj(mu) * I = Q2' * H * Q2 // // (H - mu * I) * (H - conj(mu) * I) = Q1 * Q2 * R2 * R1 = Q * R const Scalar s = Scalar(2) * m_ritz_val[i].real(); const Scalar t = norm(m_ritz_val[i]); decomp_ds.compute(m_fac.matrix_H(), s, t); // Q -> Q * Qi decomp_ds.apply_YQ(Q); // H -> Q'HQ // Matrix Q = Matrix::Identity(m_ncv, m_ncv); // decomp_ds.apply_YQ(Q); // m_fac_H = Q.transpose() * m_fac_H * Q; m_fac.compress_H(decomp_ds); i++; } else { // QR decomposition of H - mu * I, mu is real decomp_hb.compute(m_fac.matrix_H(), m_ritz_val[i].real()); // Q -> Q * Qi decomp_hb.apply_YQ(Q); // H -> Q'HQ = RQ + mu * I m_fac.compress_H(decomp_hb); } } m_fac.compress_V(Q); m_fac.factorize_from(k, m_ncv, m_nmatop); retrieve_ritzpair(selection); } // Calculates the number of converged Ritz values Index num_converged(const Scalar& tol) { using std::pow; // The machine precision, ~= 1e-16 for the "double" type constexpr Scalar eps = TypeTraits::epsilon(); // std::pow() is not constexpr, so we do not declare eps23 to be constexpr // But most compilers should be able to compute eps23 at compile time const Scalar eps23 = pow(eps, Scalar(2) / 3); // thresh = tol * max(eps23, abs(theta)), theta for Ritz value Array thresh = tol * m_ritz_val.head(m_nev).array().abs().max(eps23); Array resid = m_ritz_est.head(m_nev).array().abs() * m_fac.f_norm(); // Converged "wanted" Ritz values m_ritz_conv = (resid < thresh); return m_ritz_conv.count(); } // Returns the adjusted nev for restarting Index nev_adjusted(Index nconv) { using std::abs; // A very small value, but 1.0 / near_0 does not overflow // ~= 1e-307 for the "double" type constexpr Scalar near_0 = TypeTraits::min() * Scalar(10); Index nev_new = m_nev; for (Index i = m_nev; i < m_ncv; i++) if (abs(m_ritz_est[i]) < near_0) nev_new++; // Adjust nev_new, according to dnaup2.f line 660~674 in ARPACK nev_new += (std::min)(nconv, (m_ncv - nev_new) / 2); if (nev_new == 1 && m_ncv >= 6) nev_new = m_ncv / 2; else if (nev_new == 1 && m_ncv > 3) nev_new = 2; if (nev_new > m_ncv - 2) nev_new = m_ncv - 2; // Increase nev by one if ritz_val[nev - 1] and // ritz_val[nev] are conjugate pairs if (is_complex(m_ritz_val[nev_new - 1]) && is_conj(m_ritz_val[nev_new - 1], m_ritz_val[nev_new])) { nev_new++; } return nev_new; } // Retrieves and sorts Ritz values and Ritz vectors void retrieve_ritzpair(SortRule selection) { UpperHessenbergEigen decomp(m_fac.matrix_H()); const ComplexVector& evals = decomp.eigenvalues(); ComplexMatrix evecs = decomp.eigenvectors(); // Sort Ritz values and put the wanted ones at the beginning std::vector ind; switch (selection) { case SortRule::LargestMagn: { SortEigenvalue sorting(evals.data(), m_ncv); sorting.swap(ind); break; } case SortRule::LargestReal: { SortEigenvalue sorting(evals.data(), m_ncv); sorting.swap(ind); break; } case SortRule::LargestImag: { SortEigenvalue sorting(evals.data(), m_ncv); sorting.swap(ind); break; } case SortRule::SmallestMagn: { SortEigenvalue sorting(evals.data(), m_ncv); sorting.swap(ind); break; } case SortRule::SmallestReal: { SortEigenvalue sorting(evals.data(), m_ncv); sorting.swap(ind); break; } case SortRule::SmallestImag: { SortEigenvalue sorting(evals.data(), m_ncv); sorting.swap(ind); break; } default: throw std::invalid_argument("unsupported selection rule"); } // Copy the Ritz values and vectors to m_ritz_val and m_ritz_vec, respectively for (Index i = 0; i < m_ncv; i++) { m_ritz_val[i] = evals[ind[i]]; m_ritz_est[i] = evecs(m_ncv - 1, ind[i]); } for (Index i = 0; i < m_nev; i++) { m_ritz_vec.col(i).noalias() = evecs.col(ind[i]); } } protected: // Sorts the first nev Ritz pairs in the specified order // This is used to return the final results virtual void sort_ritzpair(SortRule sort_rule) { std::vector ind; switch (sort_rule) { case SortRule::LargestMagn: { SortEigenvalue sorting(m_ritz_val.data(), m_nev); sorting.swap(ind); break; } case SortRule::LargestReal: { SortEigenvalue sorting(m_ritz_val.data(), m_nev); sorting.swap(ind); break; } case SortRule::LargestImag: { SortEigenvalue sorting(m_ritz_val.data(), m_nev); sorting.swap(ind); break; } case SortRule::SmallestMagn: { SortEigenvalue sorting(m_ritz_val.data(), m_nev); sorting.swap(ind); break; } case SortRule::SmallestReal: { SortEigenvalue sorting(m_ritz_val.data(), m_nev); sorting.swap(ind); break; } case SortRule::SmallestImag: { SortEigenvalue sorting(m_ritz_val.data(), m_nev); sorting.swap(ind); break; } default: throw std::invalid_argument("unsupported sorting rule"); } ComplexVector new_ritz_val(m_ncv); ComplexMatrix new_ritz_vec(m_ncv, m_nev); BoolArray new_ritz_conv(m_nev); for (Index i = 0; i < m_nev; i++) { new_ritz_val[i] = m_ritz_val[ind[i]]; new_ritz_vec.col(i).noalias() = m_ritz_vec.col(ind[i]); new_ritz_conv[i] = m_ritz_conv[ind[i]]; } m_ritz_val.swap(new_ritz_val); m_ritz_vec.swap(new_ritz_vec); m_ritz_conv.swap(new_ritz_conv); } public: /// \cond GenEigsBase(OpType& op, const BOpType& Bop, Index nev, Index ncv) : m_op(op), m_n(m_op.rows()), m_nev(nev), m_ncv(ncv > m_n ? m_n : ncv), m_nmatop(0), m_niter(0), m_fac(ArnoldiOpType(op, Bop), m_ncv), m_info(CompInfo::NotComputed) { if (nev < 1 || nev > m_n - 2) throw std::invalid_argument("nev must satisfy 1 <= nev <= n - 2, n is the size of matrix"); if (ncv < nev + 2 || ncv > m_n) throw std::invalid_argument("ncv must satisfy nev + 2 <= ncv <= n, n is the size of matrix"); } /// /// Virtual destructor /// virtual ~GenEigsBase() {} /// \endcond /// /// Initializes the solver by providing an initial residual vector. /// /// \param init_resid Pointer to the initial residual vector. /// /// **Spectra** (and also **ARPACK**) uses an iterative algorithm /// to find eigenvalues. This function allows the user to provide the initial /// residual vector. /// void init(const Scalar* init_resid) { // Reset all matrices/vectors to zero m_ritz_val.resize(m_ncv); m_ritz_vec.resize(m_ncv, m_nev); m_ritz_est.resize(m_ncv); m_ritz_conv.resize(m_nev); m_ritz_val.setZero(); m_ritz_vec.setZero(); m_ritz_est.setZero(); m_ritz_conv.setZero(); m_nmatop = 0; m_niter = 0; // Initialize the Arnoldi factorization MapConstVec v0(init_resid, m_n); m_fac.init(v0, m_nmatop); } /// /// Initializes the solver by providing a random initial residual vector. /// /// This overloaded function generates a random initial residual vector /// (with a fixed random seed) for the algorithm. Elements in the vector /// follow independent Uniform(-0.5, 0.5) distribution. /// void init() { SimpleRandom rng(0); Vector init_resid = rng.random_vec(m_n); init(init_resid.data()); } /// /// Conducts the major computation procedure. /// /// \param selection An enumeration value indicating the selection rule of /// the requested eigenvalues, for example `SortRule::LargestMagn` /// to retrieve eigenvalues with the largest magnitude. /// The full list of enumeration values can be found in /// \ref Enumerations. /// \param maxit Maximum number of iterations allowed in the algorithm. /// \param tol Precision parameter for the calculated eigenvalues. /// \param sorting Rule to sort the eigenvalues and eigenvectors. /// Supported values are /// `SortRule::LargestMagn`, `SortRule::LargestReal`, /// `SortRule::LargestImag`, `SortRule::SmallestMagn`, /// `SortRule::SmallestReal` and `SortRule::SmallestImag`, /// for example `SortRule::LargestMagn` indicates that eigenvalues /// with largest magnitude come first. /// Note that this argument is only used to /// **sort** the final result, and the **selection** rule /// (e.g. selecting the largest or smallest eigenvalues in the /// full spectrum) is specified by the parameter `selection`. /// /// \return Number of converged eigenvalues. /// Index compute(SortRule selection = SortRule::LargestMagn, Index maxit = 1000, Scalar tol = 1e-10, SortRule sorting = SortRule::LargestMagn) { // The m-step Arnoldi factorization m_fac.factorize_from(1, m_ncv, m_nmatop); retrieve_ritzpair(selection); // Restarting Index i, nconv = 0, nev_adj; for (i = 0; i < maxit; i++) { nconv = num_converged(tol); if (nconv >= m_nev) break; nev_adj = nev_adjusted(nconv); restart(nev_adj, selection); } // Sorting results sort_ritzpair(sorting); m_niter += i + 1; m_info = (nconv >= m_nev) ? CompInfo::Successful : CompInfo::NotConverging; return (std::min)(m_nev, nconv); } /// /// Returns the status of the computation. /// The full list of enumeration values can be found in \ref Enumerations. /// CompInfo info() const { return m_info; } /// /// Returns the number of iterations used in the computation. /// Index num_iterations() const { return m_niter; } /// /// Returns the number of matrix operations used in the computation. /// Index num_operations() const { return m_nmatop; } /// /// Returns the converged eigenvalues. /// /// \return A complex-valued vector containing the eigenvalues. /// Returned vector type will be `Eigen::Vector, ...>`, depending on /// the template parameter `Scalar` defined. /// ComplexVector eigenvalues() const { const Index nconv = m_ritz_conv.cast().sum(); ComplexVector res(nconv); if (!nconv) return res; Index j = 0; for (Index i = 0; i < m_nev; i++) { if (m_ritz_conv[i]) { res[j] = m_ritz_val[i]; j++; } } return res; } /// /// Returns the eigenvectors associated with the converged eigenvalues. /// /// \param nvec The number of eigenvectors to return. /// /// \return A complex-valued matrix containing the eigenvectors. /// Returned matrix type will be `Eigen::Matrix, ...>`, /// depending on the template parameter `Scalar` defined. /// ComplexMatrix eigenvectors(Index nvec) const { const Index nconv = m_ritz_conv.cast().sum(); nvec = (std::min)(nvec, nconv); ComplexMatrix res(m_n, nvec); if (!nvec) return res; ComplexMatrix ritz_vec_conv(m_ncv, nvec); Index j = 0; for (Index i = 0; i < m_nev && j < nvec; i++) { if (m_ritz_conv[i]) { ritz_vec_conv.col(j).noalias() = m_ritz_vec.col(i); j++; } } res.noalias() = m_fac.matrix_V() * ritz_vec_conv; return res; } /// /// Returns all converged eigenvectors. /// ComplexMatrix eigenvectors() const { return eigenvectors(m_nev); } }; } // namespace Spectra #endif // SPECTRA_GEN_EIGS_BASE_H