#include #include "Matrix.h" #include "Function.h" #include "Function1D.h" class FunctionTester:public ::testing::Test{ protected: static void SetUpFunctionTester(){ } static void TearDownTestCase(){ } void SetUp(){ } void TearDown(){ } }; double fourDecimalRound(double src){ return round(src*10000.0)/10000.0; } TEST_F(FunctionTester, matrixSlice) { double * dataA =Aurora::malloc(8); double * dataB =Aurora::malloc(8); for (int i = 0; i < 8; ++i) { dataA[i]=(double)(i-3); dataB[i]=(double)(i+2); } Aurora::Matrix A = Aurora::Matrix::New(dataA,2,2,2); printf("A:\r\n"); A.printf(); Aurora::Matrix B = Aurora::Matrix::New(dataB,2,2,2); printf("B:\r\n"); B.printf(); A(Aurora::$,Aurora::$,1) = B(Aurora::$,Aurora::$,0); printf("New A:\r\n"); A.printf(); printf("New B:\r\n"); B.printf(); } TEST_F(FunctionTester, RawDataMatrix) { double * dataA =new double[8]; double * dataB =new double[8]; for (int i = 0; i < 8; ++i) { dataA[i]=(double)(i-3); dataB[i]=(double)(i+2); } Aurora::Matrix A = Aurora::Matrix::fromRawData(dataA,2,2,2); printf("A:\r\n"); A.printf(); Aurora::Matrix B = Aurora::Matrix::copyFromRawData(dataB,2,2,2); delete [] dataB; printf("B:\r\n"); B.printf(); A(Aurora::$,Aurora::$,1) = B(Aurora::$,Aurora::$,0); printf("New A:\r\n"); A.printf(); printf("New B:\r\n"); B.printf(); } TEST_F(FunctionTester, sign) { double * dataA =Aurora::malloc(9); double * dataB =Aurora::malloc(9); for (int i = 0; i < 9; ++i) { dataA[i]=(double)(i-3); dataB[i]=(double)(i+2); } Aurora::Matrix A = Aurora::Matrix::New(dataA,3,3); printf("A:\r\n"); A.printf(); Aurora::Matrix B = Aurora::Matrix::New(dataB,3,3); printf("B:\r\n"); B.printf(); printf("sign(A):\r\n"); sign(A*B).printf(); } TEST_F(FunctionTester, matrix) { double * dataA =Aurora::malloc(9); double * dataB =Aurora::malloc(9); for (int i = 0; i < 9; ++i) { dataA[i]=(double)(i+1); dataB[i]=(double)(i+2); } Aurora::Matrix A = Aurora::Matrix::New(dataA,3,3); A.printf(); Aurora::Matrix B = Aurora::Matrix::New(dataB,3,3); printf("B:\r\n"); B.printf(); printf("A*B:\r\n"); (A*B).printf(); printf("A*B+A:\r\n"); (A*B+A).printf(); A = (A*B+A)+3.; A.printf(); } TEST_F(FunctionTester, immse){ double dataA[9]={1,2,3,4,5,6,7,8,9}; double dataB[9]={10,20,30,40,50,40,30,20,10}; EXPECT_DOUBLE_EQ(fourDecimalRound(Aurora::immse(dataA,dataB,9)),698.3333)<<" immse error;"; } TEST_F(FunctionTester, polyval){ double dataP[3]={3,2,1}; double dataX[3]={5,7,9}; double*resultP = Aurora::polyval(dataX,dataP,3); EXPECT_DOUBLE_EQ(86., resultP[0])<<" polyval error;"; EXPECT_DOUBLE_EQ(162., resultP[1])<<" polyval error;"; EXPECT_DOUBLE_EQ(262., resultP[2])<<" polyval error;"; delete [] resultP; } TEST_F(FunctionTester, std){ double dataMA[9]={1, 2, 3, 2, 2, 6, 3, 3, 6}; double* resultStd = Aurora::std(3, 3, dataMA); EXPECT_DOUBLE_EQ(1.0, resultStd[0])<<" std error index 0"; EXPECT_DOUBLE_EQ(2.3094, fourDecimalRound(resultStd[1]))<<" std error index 1"; EXPECT_DOUBLE_EQ(1.7321, fourDecimalRound(resultStd[2]))<<" std error index 2"; delete [] resultStd; } TEST_F(FunctionTester, fftAndComplexAndIfft){ double input[10]{1,1,0,2,2,0,1,1,0,2}; std::complex* complexInput = Aurora::complex(10,input); //复数化后,实部不变,虚部全为0 EXPECT_DOUBLE_EQ(complexInput[1].real(),1.0)<<" complex error"; EXPECT_DOUBLE_EQ(complexInput[1].imag(),0)<<" complex error"; std::complex* result = Aurora::fft(10,complexInput); delete [] complexInput; //检验fft结果与matlab是否对应 EXPECT_DOUBLE_EQ(0.0729, fourDecimalRound(result[1].real()))<<" fft result value error"; EXPECT_DOUBLE_EQ(2.4899, fourDecimalRound(result[2].imag()))<<" fft result value error"; //检验fft的结果是否共轭 EXPECT_DOUBLE_EQ(0, result[4].imag()+result[6].imag())<<" fft result conjugate error"; EXPECT_DOUBLE_EQ(0, result[4].real()-result[6].real())<<" fft result conjugate error"; std::complex* ifftResult = Aurora::ifft(10,result); EXPECT_DOUBLE_EQ(fourDecimalRound(ifftResult[1].real()),1.0)<<" ifft result real value error"; EXPECT_DOUBLE_EQ(fourDecimalRound(ifftResult[1].imag()),0)<<" ifft result imag value error"; delete [] result; delete [] ifftResult; } TEST_F(FunctionTester, inv){ //默认是column major排布数据 double dataMA[9]={2, 0, 2, 2, 3, 0, 3, 3, 3}; double* result = Aurora::inv(3,dataMA); EXPECT_DOUBLE_EQ(0.75, fourDecimalRound(result[0]))<<" inv value error"; EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[1]))<<" inv value error"; EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[2]))<<" inv value error"; EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[3]))<<" inv value error"; EXPECT_DOUBLE_EQ(.0, fourDecimalRound(result[4]))<<" inv value error"; EXPECT_DOUBLE_EQ(0.3333, fourDecimalRound(result[5]))<<" inv value error"; EXPECT_DOUBLE_EQ(-0.25, fourDecimalRound(result[6]))<<" inv value error"; EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[7]))<<" inv value error"; EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[8]))<<" inv value error"; delete [] result; } TEST_F(FunctionTester, hilbert) { double input[10]{1,1,0,2,2,0,1,1,0,2}; auto result = Aurora::hilbert(10,input); EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].real()),1.0)<<" hilbert result real value error"; EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].imag()),0.3249)<<" hilbert result imag value error"; delete [] result; result = Aurora::hilbert(9,input); EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].real()),1.0)<<" hilbert result real value error"; EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].imag()),0.4253)<<" hilbert result imag value error"; }