#include #include #include #include "Function.h" #include "Function2D.h" #include "Function1D.h" //必须在Eigen之前 #include "AuroraDefs.h" #include "Function3D.h" #include "Matrix.h" #include #include #include #include #include using namespace Aurora; double Aurora::immse(const Aurora::Matrix &aImageA, const Aurora::Matrix &aImageB) { if (aImageA.getDims()!=2|| aImageB.getDims()!=2){ std::cerr<<"Fail!immse args must all 2d matrix!"; return 0.0; } if (!aImageB.compareShape(aImageA)){ std::cerr<<"Fail!immse args must be same shape!"; return 0.0; } if (aImageA.getValueType()!=Normal || aImageB.getValueType() != Normal) { std::cerr << "Fail!immse args must be normal value type!"; return 0.0; } int size = aImageA.getDataSize(); auto temp = malloc(size); vdSub(size, aImageA.getData(), aImageB.getData(), temp); vdSqr(size, temp, temp); double result = cblas_dasum(size, temp, 1) / (double) size; free(temp); return result; } Aurora::Matrix Aurora::inv(const Aurora::Matrix &aMatrix) { if (aMatrix.getDims() != 2) { std::cerr << "Fail!inv args must be 2d matrix!"; return aMatrix; } if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) { std::cerr << "Fail!inv args must be square matrix!"; return aMatrix; } if (aMatrix.getValueType() != Normal) { std::cerr << "Fail!inv args must be normal value type!"; return aMatrix; } int size = aMatrix.getDataSize(); int *ipiv = new int[aMatrix.getDimSize(0)]; auto result = malloc(size); cblas_dcopy(size,aMatrix.getData(), 1,result, 1); LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv); LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv); delete[] ipiv; return Matrix::New(result,aMatrix); } Aurora::Matrix Aurora::inv(Aurora::Matrix&& aMatrix) { if (aMatrix.getDims() != 2) { std::cerr << "Fail!inv args must be 2d matrix!"; return aMatrix; } if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) { std::cerr << "Fail!inv args must be square matrix!"; return aMatrix; } if (aMatrix.getValueType() != Normal) { std::cerr << "Fail!inv args must be normal value type!"; return aMatrix; } int *ipiv = new int[aMatrix.getDimSize(0)]; LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv); LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv); delete[] ipiv; return aMatrix; } Matrix Aurora::interp2(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod) { if (aV.getDims() != 2) { return Matrix(); } if (aX1.getDimSize(0) != aY1.getDimSize(0)) { return Matrix(); } int columnNum = aV.getDimSize(1); int rowNum = aV.getDimSize(0); if(aX.getDimSize(0) != columnNum || aY.getDimSize(0) != rowNum) { return Matrix(); } int nx1 = aX1.getDimSize(0); std::shared_ptr resultData = std::shared_ptr(Aurora::malloc(nx1), Aurora::free); for (int i = 0; i < nx1; ++i) { std::shared_ptr xResultData = std::shared_ptr(Aurora::malloc(columnNum), Aurora::free); for(int j =0; j < columnNum; ++j) { xResultData.get()[j] = interp1(aY,aV($,j).toMatrix(),aY1(i).toMatrix(),aMethod).getData()[0]; } Matrix xResult(xResultData,std::vector{columnNum}); resultData.get()[i] = interp1(aX,xResult,aX1(i).toMatrix(),aMethod).getData()[0]; } return Matrix(resultData,std::vector{nx1}); } Matrix Aurora::interpn(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod) { return Aurora::interp2(aY,aX,aV,aY1,aX1,aMethod); } Matrix Aurora::std(const Matrix &aMatrix) { if (aMatrix.getDimSize(2) > 1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "std() not support 3D data!" : "std() not support complex value type!") << std::endl; return Matrix(); } Matrix src = aMatrix.isComplex() ? Aurora::abs(aMatrix) : aMatrix.deepCopy(); int calc_size = src.getDimSize(0) == 1 ? src.getDimSize(1) : src.getDimSize(0); int col = src.getDimSize(0) == 1?1:src.getDimSize(1) ; auto std = Aurora::malloc(col); auto meanM = Aurora::mean(aMatrix); for (int i = 0; i < col; ++i) { double *p = src.getData() + i * calc_size; double mean = meanM[i]; vdSubI(calc_size, p, 1, &mean, 0, p, 1); vdSqr(calc_size, p, p); std[i] = cblas_dasum(calc_size, p, 1) / (calc_size - 1); } vdSqrt(col, std, std); return Matrix::New(std, 1, col, aMatrix.getDimSize(2)); } Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction, long& rowIdx, long& colIdx) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } //针对向量行等于列 if (direction == Column && aMatrix.getDimSize(0)==1){ direction = All; } switch (direction) { case All: { Eigen::Map retV(aMatrix.getData(), aMatrix.getDimSize(0), aMatrix.getDimSize(1)); double *ret = malloc(1); ret[0] = retV.array().minCoeff(&rowIdx, &colIdx); return Matrix::New(ret, 1); } case Row: { Eigen::Map srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); if (aMatrix.getDimSize(0) == 1){ ret[0] = srcMatrix.topRows(0).minCoeff(&rowIdx, &colIdx); } else{ Eigen::Map retMatrix(ret,aMatrix.getDimSize(0),1); retMatrix = srcMatrix.rowwise().minCoeff(); } return Matrix::New(ret,aMatrix.getDimSize(0),1); } case Column: default: { Eigen::Map srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(1)); if (aMatrix.getDimSize(1) == 1){ ret[0] = srcMatrix.col(0).minCoeff(&rowIdx, &colIdx); } else { Eigen::Map retMatrix(ret,1,aMatrix.getDimSize(1)); retMatrix = srcMatrix.colwise().minCoeff(); } return Matrix::New(ret,1,aMatrix.getDimSize(1)); } } } Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) { long a,b; return min(aMatrix,direction,a,b); } Matrix Aurora::min(const Matrix &aMatrix, const Matrix &aOther) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } if (aOther.getDimSize(2)>1 || aOther.isComplex()) { std::cerr << (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } //same shape if (aMatrix.compareShape(aOther)){ double* output = malloc(aMatrix.getDataSize()); vdFminI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1); return Matrix::New(output,aMatrix); } // one is scalar else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){ double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0]; auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix; double* output = malloc(matrix.getDataSize()); vdFminI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1); return Matrix::New(output,matrix); } else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) { if (aMatrix.getDimSize(1) == 1){ double* output = malloc(aOther.getDataSize()); for (int i = 0; i < aOther.getDimSize(1); ++i) { vdFminI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1, output + aOther.getDimSize(0) * i, 1); } return Matrix::New(output,aOther); } else{ double* output = malloc(aMatrix.getDataSize()); for (int i = 0; i < aMatrix.getDimSize(0); ++i) { vdFminI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0), output + i, aOther.getDimSize(0)); } return Matrix::New(output,aMatrix); } } else{ std::cerr << "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]" << std::endl; return Matrix(); } } Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction) { long a,b; return max(aMatrix,direction,a,b); } Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction, long& rowIdx, long& colIdx) { if (aMatrix.getDimSize(2)>1) { std::cerr << "max() not support 3D data!" << std::endl; return Matrix(); } auto calcMatrix = aMatrix.isComplex()?abs(aMatrix):aMatrix; //针对向量行等于列 if (direction == Column && calcMatrix.getDimSize(0)==1){ direction = All; } switch (direction) { case All: { Eigen::Map retV(calcMatrix.getData(), calcMatrix.getDimSize(0), calcMatrix.getDimSize(1)); double *ret = malloc(1); ret[0] = retV.array().maxCoeff(&rowIdx, &colIdx); return Matrix::New(ret,1); } case Row: { Eigen::Map srcMatrix(calcMatrix.getData(),calcMatrix.getDimSize(0),calcMatrix.getDimSize(1)); double * ret = malloc(calcMatrix.getDimSize(0)); if (calcMatrix.getDimSize(0) == 1){ ret[0] = srcMatrix.topRows(0).maxCoeff(&rowIdx, &colIdx); } else{ Eigen::Map retMatrix(ret,calcMatrix.getDimSize(0),1); retMatrix = srcMatrix.rowwise().maxCoeff(); } return Matrix::New(ret,calcMatrix.getDimSize(0),1); } case Column: default: { Eigen::Map srcMatrix(calcMatrix.getData(),calcMatrix.getDimSize(0),calcMatrix.getDimSize(1)); double * ret = malloc(calcMatrix.getDimSize(1)); if (calcMatrix.getDimSize(1) == 1){ ret[0] = srcMatrix.col(0).maxCoeff(&rowIdx, &colIdx); } else { Eigen::Map retMatrix(ret,1,calcMatrix.getDimSize(1)); retMatrix = srcMatrix.colwise().maxCoeff(); } return Matrix::New(ret,1,calcMatrix.getDimSize(1)); } } } Matrix Aurora::max(const Matrix &aMatrix, const Matrix &aOther) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } if (aOther.getDimSize(2)>1 || aOther.isComplex()) { std::cerr << (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } //same shape if (aMatrix.compareShape(aOther)){ double* output = malloc(aMatrix.getDataSize()); vdFmaxI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1); return Matrix::New(output,aMatrix); } // one is scalar else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){ double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0]; auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix; double* output = malloc(matrix.getDataSize()); vdFmaxI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1); return Matrix::New(output,matrix); } else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) { if (aMatrix.getDimSize(1) == 1){ double* output = malloc(aOther.getDataSize()); for (int i = 0; i < aOther.getDimSize(1); ++i) { vdFmaxI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1, output + aOther.getDimSize(0) * i, 1); } return Matrix::New(output,aOther); } else{ double* output = malloc(aMatrix.getDataSize()); for (int i = 0; i < aMatrix.getDimSize(0); ++i) { vdFmaxI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0), output + i, aOther.getDimSize(0)); } return Matrix::New(output,aMatrix); } } else{ std::cerr << "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]" << std::endl; return Matrix(); } } Matrix Aurora::max(const Matrix &aMatrix, const double aValue){ double *output = malloc(1); output[0] = aValue; return max(aMatrix,Matrix::New(output, 1,1,1)); } Matrix Aurora::sum(const Matrix &aMatrix, FunctionDirection direction) { if (aMatrix.getDimSize(2)>1 ) { std::cerr<< "sum() not support 3D data!" << std::endl; return Matrix(); } //针对向量行等于列 if (direction == Column && aMatrix.getDimSize(0)==1){ direction = Row; } if (aMatrix.isComplex()){ switch (direction) { case All: { Eigen::Map srcV((std::complex*)aMatrix.getData(),aMatrix.getDataSize()); std::complex* ret = (std::complex*)malloc(1,true); ret[0] = srcV.array().sum(); return Matrix::New((double*)ret,1,1,1,Complex); } case Row: { Eigen::Map srcM((std::complex*)aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); std::complex * ret = (std::complex*)malloc(aMatrix.getDimSize(0),true); Eigen::Map retV(ret,aMatrix.getDimSize(0)); retV = srcM.rowwise().sum(); return Matrix::New((double*)ret,aMatrix.getDimSize(0),1,1,Complex); } case Column: default: { Eigen::Map srcM((std::complex*)aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); std::complex* ret = (std::complex*)malloc(aMatrix.getDimSize(1),true); Eigen::Map retV(ret,aMatrix.getDimSize(1)); retV = srcM.colwise().sum(); return Matrix::New((double*)ret,1,aMatrix.getDimSize(1),1,Complex); } } } else{ switch (direction) { case All: { Eigen::Map srcV(aMatrix.getData(),aMatrix.getDataSize()); double * ret = malloc(1); ret[0] = srcV.array().sum(); return Matrix::New(ret,1); } case Row: { Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retV(ret,aMatrix.getDimSize(0)); retV = srcM.rowwise().sum(); return Matrix::New(ret,aMatrix.getDimSize(0),1); } case Column: default: { Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(1)); Eigen::Map retV(ret,aMatrix.getDimSize(1)); retV = srcM.colwise().sum(); return Matrix::New(ret,1,aMatrix.getDimSize(1)); } } } } Matrix Aurora::mean(const Matrix &aMatrix, FunctionDirection direction, bool aIncludeNan) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "sum() not support 3D data!" : "sum() not support complex value type!") << std::endl; return Matrix(); } //针对向量行等于列 if (direction == Column && aMatrix.getDimSize(0)==1){ direction = All; } if (aIncludeNan){ switch (direction) { case All: { Eigen::Map srcV(aMatrix.getData(),aMatrix.getDataSize()); double * ret = malloc(64); ret[0] = srcV.array().mean(); return Matrix::New(ret,1); } case Row: { Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retV(ret,aMatrix.getDimSize(0)); retV = srcM.rowwise().mean(); return Matrix::New(ret,aMatrix.getDimSize(0),1); } case Column: default: { Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(1)); Eigen::Map retV(ret,aMatrix.getDimSize(1)); retV = srcM.colwise().mean(); return Matrix::New(ret,1,aMatrix.getDimSize(1)); } } } else{ switch (direction) { case All: { Eigen::Map srcV(aMatrix.getData(),aMatrix.getDataSize()); double * retVd = malloc(aMatrix.getDataSize()); Eigen::Map retV(retVd,aMatrix.getDataSize()); Eigen::VectorXd ones = Eigen::VectorXd(aMatrix.getDataSize()); ones.setConstant(1.0); retV = srcV.array().isNaN().select(0.0,ones); int count = retV.sum(); if (count == 0){ free(retVd); double *ret = malloc(1); ret[0]=0; return Matrix::New(ret,1); } else { double *ret = malloc(1); retV = srcV.array().isNaN().select(0.0,srcV); ret[0] = retV.sum() / count; free(retVd); return Matrix::New(ret, 1); } } case Row: { Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * retMd = malloc(aMatrix.getDataSize()); Eigen::Map retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1)); Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1)); zeros.setConstant(0.0); retM = srcM.array().isNaN().select(zeros,1.0); Eigen::VectorXd countM = retM.rowwise().sum(); countM = (countM.array()==0.0).select(1.0,countM); retM = srcM.array().isNaN().select(0.0,srcM); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retV(ret,aMatrix.getDimSize(0)); retV = retM.rowwise().sum(); retV =retV.array()/countM.array(); free(retMd); return Matrix::New(ret,aMatrix.getDimSize(0),1); } case Column: default: { Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * retMd = malloc(aMatrix.getDataSize()); Eigen::Map retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1)); Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1)); zeros.setConstant(0.0); retM = srcM.array().isNaN().select(zeros,1.0); Eigen::VectorXd countM = retM.colwise().sum(); countM = (countM.array()==0).select(1.0,countM); retM = srcM.array().isNaN().select(0.0,srcM); double * ret = malloc(aMatrix.getDimSize(1)); Eigen::Map retV(ret,aMatrix.getDimSize(1)); retV = retM.colwise().sum(); retV = retV.array()/countM.array(); free(retMd); return Matrix::New(ret,1,aMatrix.getDimSize(1)); } } } } Matrix Aurora::sort(const Matrix &aMatrix, FunctionDirection direction) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "sort() not support 3D data!" : "sort() not support complex value type!") << std::endl; return Matrix(); } return sort(std::forward(aMatrix.deepCopy()), direction); } Matrix Aurora::sort(Matrix &&aMatrix, FunctionDirection direction) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "sort() not support 3D data!" : "sort() not support complex value type!") << std::endl; return Matrix(); } //针对向量行等于列 if (aMatrix.getDimSize(0)==1){ direction = Row; } if (direction == Column) { if (aMatrix.getDimSize(0)>=100000){ #pragma omp parallel for for (int i = 0; i < aMatrix.getDimSize(1); ++i) { Eigen::Map srcV(aMatrix.getData()+i*aMatrix.getDimSize(0),aMatrix.getDimSize(0)); std::sort(srcV.array().begin(),srcV.array().end()); } } else { for (int i = 0; i < aMatrix.getDimSize(1); ++i) { Eigen::Map srcV(aMatrix.getData()+i*aMatrix.getDimSize(0),aMatrix.getDimSize(0)); std::sort(srcV.array().begin(),srcV.array().end()); } } } else if(direction == Row){ Eigen::Map srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); if (aMatrix.getDimSize(1)>=100000){ #pragma omp parallel for for (int i = 0; i < aMatrix.getDimSize(0); ++i) { std::sort(srcM.row(i).array().begin(),srcM.row(i).array().end()); } } else { for (int i = 0; i < aMatrix.getDimSize(0); ++i) { std::sort(srcM.row(i).array().begin(),srcM.row(i).array().end()); } } } else{ std::cerr<<"sort not support all mode!"<1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "sortrows() not support 3D data!" : "sortrows() not support complex value type!") << std::endl; return Matrix(); } auto result = aMatrix.deepCopy(); int rows = aMatrix.getDimSize(0); std::vector> col; std::vector>::iterator last; for (size_t j = 0; j < rows; j++) { col.push_back(std::make_pair(aMatrix[j], j)); } std::sort(col.begin(), col.end(),[](auto a,auto b){ return a.first < b.first; }); last = col.begin(); //按列里边 for (size_t i = 1; i < aMatrix.getDimSize(1); i++) { int beginIdx = 0; bool sameFlag = false; //遍历已排序数据查找相同值 while(beginIdx < col.size()){ for (int iterIdx = beginIdx+1; iterIdx <= col.size(); iterIdx++) { //查找下一个不同值 if(col[iterIdx].first == col[iterIdx-1].first && iterIdx!=col.size()){ //存在相同值 sameFlag = true; continue; } //判断是否需要对相同值进行排序,iterIdx-beginIdx==1时代表正常的不同值 if (iterIdx-beginIdx != 1){ //按照新的一列对相同值排序 std::sort(col.begin()+beginIdx, col.begin()+iterIdx,[&aMatrix,i,rows](auto a,auto b){ return aMatrix[a.second+i*rows] < aMatrix[b.second+i*rows]; }); } beginIdx = iterIdx; } //未发现不同值 break 循环 if(!sameFlag) break; } //未发现不同值 break 循环 if(!sameFlag) break; //按照新一列刷新数组值 std::for_each(col.begin(), col.end() , [&aMatrix,i,rows](std::pair& a){return a.first=aMatrix[a.second+i*rows];}); } int i=0; (*indexMatrix) = zeros(aMatrix.getDimSize(0),1); std::for_each(col.begin(),col.end(), [&aMatrix,&result,&i,indexMatrix](std::pair& a){ result(i,$) = aMatrix(a.second,$); (*indexMatrix)[i] = a.second; i++; }); return result; } Matrix Aurora::median(const Matrix &aMatrix) { if (aMatrix.getDimSize(2) > 1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "median() not support 3D data!" : "median() not support complex value type!") << std::endl; return Matrix(); } bool horVector = aMatrix.getDimSize(0)==1; Matrix sorted = horVector?sort(aMatrix,Row):sort(aMatrix); int rows = horVector?sorted.getDimSize(1):sorted.getDimSize(0); int cols = horVector?sorted.getDimSize(0):sorted.getDimSize(1); Eigen::Map srcM(sorted.getData(),rows,cols); bool flag = rows % 2 == 1; double* ret = malloc(cols); Eigen::Map retV(ret,cols); if (flag) { retV = srcM.row(rows/2); return Matrix::New(ret,1,cols); } else { retV = (srcM.row(rows/2-1).array()+srcM.row(rows/2).array())/2; return Matrix::New(ret,1,cols); } } Matrix Aurora::fft(const Matrix &aMatrix, long aFFTSize) { double *output = nullptr; mkl_free_buffers(); MKL_LONG rowSize = (aFFTSize>0)?aFFTSize:aMatrix.getDimSize(0); //实际需要copy赋值的非0值 MKL_LONG needCopySize = (rowSize0)?aFFTSize:aMatrix.getDimSize(0); //实际需要copy赋值的非0值 MKL_LONG needCopySize = (rowSize> 31) ? 2.0 : 1.0; h[0] = 1.0; for (int i = 0; i < aMatrix.getDimSize(1); ++i) { auto p = (double *)(x.getData() + aMatrix.getDimSize(0)* i*2); vdMulI(aMatrix.getDimSize(0), p, 2, h, 1, p, 2); vdMulI(aMatrix.getDimSize(0), p + 1, 2, h, 1, p + 1, 2); } auto result = ifft( x); free(h); return result; } Matrix Aurora::prod(const Matrix &aMatrix) { if (aMatrix.getDimSize(2) > 1 ) { std::cerr<< "prod() not support 3D data!"<< std::endl; return Matrix(); } int row = aMatrix.getDimSize(0)==1?aMatrix.getDimSize(1):aMatrix.getDimSize(0); int col = aMatrix.getDimSize(0)==1?1:aMatrix.getDimSize(1); if (aMatrix.isComplex()){ Eigen::Map srcM((std::complex*)aMatrix.getData(),row,col); auto ret = malloc(col,true); Eigen::Map retV((std::complex*)ret,col); retV = srcM.colwise().prod(); return Matrix::New(ret,1,col,1,Complex); } else{ Eigen::Map srcM(aMatrix.getData(),row,col); auto ret = malloc(col); Eigen::Map retV(ret,col); retV = srcM.colwise().prod(); return Matrix::New(ret,1,col); } } Matrix Aurora::dot(const Matrix &aMatrix,const Matrix& aOther,FunctionDirection direction ) { if ( direction == All){ std::cerr<< "dot() not support 3D data!"<< std::endl; return Matrix(); } if (!aMatrix.compareShape(aOther)){ std::cerr<< "dot() matrix must be same shape!"<< std::endl; return Matrix(); } //针对向量行等于列 if (direction == Column && aMatrix.getDimSize(0)==1){ direction = Row; } if (aMatrix.isComplex()){ return sum(conj(aMatrix)*aOther,direction); } else{ if (direction == Column) { auto ret = malloc(aMatrix.getDimSize(1)); for (int i = 0; i < aMatrix.getDimSize(1); ++i) { ret[i]=cblas_ddot(aMatrix.getDimSize(0),aMatrix.getData()+i*aMatrix.getDimSize(0),1, aOther.getData()+i*aMatrix.getDimSize(0),1); } return Matrix::New(ret,1,aMatrix.getDimSize(1),1); } else{ auto ret = malloc(aMatrix.getDimSize(0)); for (int i = 0; i < aMatrix.getDimSize(0); ++i) { ret[i] = cblas_ddot(aMatrix.getDimSize(1),aMatrix.getData()+i,aMatrix.getDimSize(0), aOther.getData()+i,aMatrix.getDimSize(0)); } return Matrix::New(ret,aMatrix.getDimSize(1),1,1); } } } Matrix Aurora::sub2ind(const Matrix &aVMatrixSize, std::initializer_list aSliceIdxsList) { if (aSliceIdxsList.size() != aVMatrixSize.getDataSize()){ std::cerr<<"sub2ind size not match"<getDataSize(); double *strides =new double[aVMatrixSize.getDataSize()+1]; strides[0] = 1; for (int i = 1; i<=aVMatrixSize.getDataSize(); ++i) { strides[i] = strides[i-1]*aVMatrixSize.getData()[i-1]; } double* output = Aurora::malloc(returnVectorSize); for (size_t i = 0; i