#include #include "Matrix.h" #include "Function.h" #include "Function1D.h" #include "Function2D.h" #define DISPLAY_MATRIX(Matrix)\ printf("=====================================\r\n");\ printf("%s:\r\n", #Matrix);\ Matrix.printf();\ printf("%s end================================\r\n", #Matrix); #define DISPLAY_MATRIX class FunctionTester:public ::testing::Test{ protected: static void SetUpFunctionTester(){ } static void TearDownTestCase(){ } void SetUp(){ } void TearDown(){ } }; double fourDecimalRound(double src){ return round(src*10000.0)/10000.0; } TEST_F(FunctionTester, MatrixCreate) { double * dataA =Aurora::malloc(9); double * dataB = new double[9]; double * dataC = new double[9]; double * dataD = new double[9]; //mkl matrix { Aurora::Matrix A = Aurora::Matrix::New(dataA, 3, 3); EXPECT_EQ(dataA, A.getData()); EXPECT_EQ(9, A.getDataSize()); EXPECT_EQ(2, A.getDims()); EXPECT_EQ(3, A.getDimSize(0)); EXPECT_EQ(3, A.getDimSize(1)); EXPECT_EQ(Aurora::Normal, A.getValueType()); DISPLAY_MATRIX(A); } // double [] matrix { Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB, 3, 3); EXPECT_EQ(dataB, B.getData()); EXPECT_EQ(9, B.getDataSize()); EXPECT_EQ(2, B.getDims()); EXPECT_EQ(3, B.getDimSize(0)); EXPECT_EQ(3, B.getDimSize(1)); EXPECT_EQ(Aurora::Normal, B.getValueType()); DISPLAY_MATRIX(B); } // copy from double [] to mkl matrix { Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataC, 3, 3); EXPECT_NE(dataC, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(3, C.getDimSize(0)); EXPECT_EQ(3, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 2vector { Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataC, 9); EXPECT_NE(dataC, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(9, C.getDimSize(0)); EXPECT_EQ(1, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 2d vector { Aurora::Matrix C = Aurora::Matrix::fromRawData(dataC, 9, 1); EXPECT_EQ(dataC, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(9, C.getDimSize(0)); EXPECT_EQ(1, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 2d vector column major { Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataD, 1, 9); EXPECT_NE(dataD, C.getData()); delete [] dataD; EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(1, C.getDimSize(0)); EXPECT_EQ(9, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 3d matrix { double * tempData = new double[9]; Aurora::Matrix C = Aurora::Matrix::fromRawData(tempData, 3, 3,1); EXPECT_EQ(dataD, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(3, C.getDimSize(0)); EXPECT_EQ(3, C.getDimSize(1)); EXPECT_EQ(1, C.getDimSize(2)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 3d matrix 2 { double * tempData = new double[9]; Aurora::Matrix C = Aurora::Matrix::fromRawData(tempData, 3, 1,3); EXPECT_EQ(dataD, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(3, C.getDims()); EXPECT_EQ(3, C.getDimSize(0)); EXPECT_EQ(1, C.getDimSize(1)); EXPECT_EQ(3, C.getDimSize(2)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } } TEST_F(FunctionTester, matrixSlice) { double * dataA =Aurora::malloc(8); double * dataB =Aurora::malloc(8); double * dataC =Aurora::malloc(8); for (int i = 0; i < 8; ++i) { dataA[i]=(double)(i); dataB[i]=(double)(1); dataC[i]=(double)(9-i); } Aurora::Matrix A = Aurora::Matrix::New(dataA,2,2,2); Aurora::Matrix B = Aurora::Matrix::New(dataB,2,2,2); Aurora::Matrix C = Aurora::Matrix::New(dataC,2,2,2); //2D slice EXPECT_EQ(4.0,dataA[4]); A(Aurora::$,Aurora::$,1) = B(0,Aurora::$,Aurora::$); EXPECT_EQ(1,dataA[4]); EXPECT_EQ(3,dataA[3]); A(Aurora::$,1,Aurora::$) = B(Aurora::$,Aurora::$,0); EXPECT_EQ(1.0,dataA[3]); EXPECT_EQ(0.0,dataA[0]); A(0,Aurora::$,Aurora::$) = B(Aurora::$,0,Aurora::$); EXPECT_EQ(1.0,dataA[0]); //vector slice A(0,Aurora::$,0) = C(0,0,Aurora::$); EXPECT_EQ(9.0,dataA[0]); A(Aurora::$,0,0) = C(0,Aurora::$,1); EXPECT_EQ(5.0,dataA[0]); //error slice EXPECT_EQ(1,A(Aurora::$,Aurora::$,Aurora::$).toMatrix().getDataSize() ); auto D =C(0,0,0).toMatrix(); EXPECT_EQ(1,D.getDataSize() ); EXPECT_EQ(9,D.getData()[0] ); } TEST_F(FunctionTester, matrixOpertaor) { //3D { double * dataA =new double[8]; double * dataB =new double[8]; double * dataD =new double[8]; for (int i = 0; i < 8; ++i) { dataA[i]=(double)(i); dataB[i]=(double)(2); } Aurora::Matrix A = Aurora::Matrix::fromRawData(dataA,2,2,2); DISPLAY_MATRIX(A); Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB,2,2,2); DISPLAY_MATRIX(B); Aurora::Matrix D = Aurora::Matrix::fromRawData(dataD,4,2); DISPLAY_MATRIX(D); auto C = (A*B)-B; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],2); C = A*B/2.0; EXPECT_EQ(C.getData()[2],2); C = (A*8.0/B) * (B+1.0)-2.0+8; EXPECT_EQ(C.getData()[2],30); //Error matrix C = A*D; EXPECT_EQ(C.getDataSize(),0); } //complex { double * dataA =Aurora::malloc(8,true); double * dataB =Aurora::malloc(8,true); double * dataD =new double[8]; for (int i = 0; i < 16; ++i) { dataA[i]=(double)(i+1); dataB[i]=(double)(2); if(i<8) dataD[i]=(double)(2); } Aurora::Matrix A = Aurora::Matrix::New(dataA,2,2,2,Aurora::Complex); DISPLAY_MATRIX(A); Aurora::Matrix B = Aurora::Matrix::New(dataB,2,2,2,Aurora::Complex); DISPLAY_MATRIX(B); Aurora::Matrix D = Aurora::Matrix::fromRawData(dataD,2,2,2); DISPLAY_MATRIX(D); auto C = A + 5.0 -2.0; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],6); EXPECT_EQ(C.getData()[3],4); EXPECT_TRUE(C.isComplex()); C = A*B-B; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],-4); EXPECT_EQ(C.getData()[3],12); EXPECT_TRUE(C.isComplex()); C = A*B-2.0+5.0; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],1); EXPECT_EQ(C.getData()[3],14); C = A*B/2.0*3.; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],-3); EXPECT_EQ(C.getData()[3],21); C = A*B/B; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],3); EXPECT_EQ(C.getData()[3],4); C = A*B/(B*A/A); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],3); EXPECT_EQ(C.getData()[3],4); C = B*D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],4); EXPECT_EQ(C.getData()[3],4); C = B/D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],1); EXPECT_EQ(C.getData()[3],1); C = B+D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],4); EXPECT_EQ(C.getData()[3],2); C = B-D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],0); EXPECT_EQ(C.getData()[3],2); C = B*(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],4); EXPECT_EQ(C.getData()[3],4); C = B/(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],1); EXPECT_EQ(C.getData()[3],1); C = B+(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],4); EXPECT_EQ(C.getData()[3],2); C = B-(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],0); EXPECT_EQ(C.getData()[3],2); C = (B*1.0)*(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],4); EXPECT_EQ(C.getData()[3],4); C = (B*1.0)/(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],1); EXPECT_EQ(C.getData()[3],1); C = (B*1.0)+(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],4); EXPECT_EQ(C.getData()[3],2); C = (B*1.0)-(D*1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2],0); EXPECT_EQ(C.getData()[3],2); } } TEST_F(FunctionTester, sign) { double * dataA =Aurora::malloc(9); double * dataB =Aurora::malloc(9); for (int i = 0; i < 9; ++i) { dataA[i]=(double)(i-3); dataB[i]=(double)(i+2); } Aurora::Matrix A = Aurora::Matrix::New(dataA,3,3); Aurora::Matrix B = Aurora::Matrix::New(dataB,3,3); auto C = sign(A*B); double * result = C.getData(); EXPECT_EQ(-1, result[0]); EXPECT_EQ(0, result[3]); EXPECT_EQ(1, result[4]); } TEST_F(FunctionTester, immse){ double *dataA = new double[9]{1,2,3,4,5,6,7,8,9}; double *dataB = new double[9]{10,20,30,40,50,40,30,20,10}; Aurora::Matrix A = Aurora::Matrix::fromRawData(dataA,3,3); Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB,3,3); double v = immse(A,B); EXPECT_DOUBLE_EQ(fourDecimalRound(v),698.3333)<<" immse error;"; } TEST_F(FunctionTester, inv){ //默认是column major排布数据 double *dataA=new double[9]{2, 0, 2, 2, 3, 0, 3, 3, 3}; double *dataB=new double[9]{1, 1, 1, 1, 1, 1, 1, 1, 1}; Aurora::Matrix A = Aurora::Matrix::fromRawData(dataA,3,3); Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB,3,3); auto invA = Aurora::inv(A); double* result = invA.getData(); EXPECT_DOUBLE_EQ(0.75, fourDecimalRound(result[0])); EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[1])); EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[2])); EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[3])); EXPECT_DOUBLE_EQ(.0, fourDecimalRound(result[4])); EXPECT_DOUBLE_EQ(0.3333, fourDecimalRound(result[5])); EXPECT_DOUBLE_EQ(-0.25, fourDecimalRound(result[6])); EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[7])); EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[8])); invA = Aurora::inv(A*B); result = invA.getData(); EXPECT_DOUBLE_EQ(0.75, fourDecimalRound(result[0])); EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[1])); EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[2])); EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[3])); EXPECT_DOUBLE_EQ(.0, fourDecimalRound(result[4])); EXPECT_DOUBLE_EQ(0.3333, fourDecimalRound(result[5])); EXPECT_DOUBLE_EQ(-0.25, fourDecimalRound(result[6])); EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[7])); EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[8])); } TEST_F(FunctionTester, polyval){ double dataP[3]={3,2,1}; double dataX[3]={5,7,9}; double*resultP = Aurora::polyval(dataX,dataP,3); EXPECT_DOUBLE_EQ(86., resultP[0])<<" polyval error;"; EXPECT_DOUBLE_EQ(162., resultP[1])<<" polyval error;"; EXPECT_DOUBLE_EQ(262., resultP[2])<<" polyval error;"; delete [] resultP; } TEST_F(FunctionTester, std){ double dataMA[9]={1, 2, 3, 2, 2, 6, 3, 3, 6}; double* resultStd = Aurora::std(3, 3, dataMA); EXPECT_DOUBLE_EQ(1.0, resultStd[0])<<" std error index 0"; EXPECT_DOUBLE_EQ(2.3094, fourDecimalRound(resultStd[1]))<<" std error index 1"; EXPECT_DOUBLE_EQ(1.7321, fourDecimalRound(resultStd[2]))<<" std error index 2"; delete [] resultStd; } TEST_F(FunctionTester, fftAndComplexAndIfft){ double input[10]{1,1,0,2,2,0,1,1,0,2}; std::complex* complexInput = Aurora::complex(10,input); //复数化后,实部不变,虚部全为0 EXPECT_DOUBLE_EQ(complexInput[1].real(),1.0)<<" complex error"; EXPECT_DOUBLE_EQ(complexInput[1].imag(),0)<<" complex error"; std::complex* result = Aurora::fft(10,complexInput); delete [] complexInput; //检验fft结果与matlab是否对应 EXPECT_DOUBLE_EQ(0.0729, fourDecimalRound(result[1].real()))<<" fft result value error"; EXPECT_DOUBLE_EQ(2.4899, fourDecimalRound(result[2].imag()))<<" fft result value error"; //检验fft的结果是否共轭 EXPECT_DOUBLE_EQ(0, result[4].imag()+result[6].imag())<<" fft result conjugate error"; EXPECT_DOUBLE_EQ(0, result[4].real()-result[6].real())<<" fft result conjugate error"; std::complex* ifftResult = Aurora::ifft(10,result); EXPECT_DOUBLE_EQ(fourDecimalRound(ifftResult[1].real()),1.0)<<" ifft result real value error"; EXPECT_DOUBLE_EQ(fourDecimalRound(ifftResult[1].imag()),0)<<" ifft result imag value error"; delete [] result; delete [] ifftResult; } TEST_F(FunctionTester, hilbert) { double input[10]{1,1,0,2,2,0,1,1,0,2}; auto result = Aurora::hilbert(10,input); EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].real()),1.0)<<" hilbert result real value error"; EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].imag()),0.3249)<<" hilbert result imag value error"; delete [] result; result = Aurora::hilbert(9,input); EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].real()),1.0)<<" hilbert result real value error"; EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].imag()),0.4253)<<" hilbert result imag value error"; }