// Copyright (C) 2016-2022 Yixuan Qiu // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at https://mozilla.org/MPL/2.0/. #ifndef SPECTRA_DOUBLE_SHIFT_QR_H #define SPECTRA_DOUBLE_SHIFT_QR_H #include #include // std::vector #include // std::min, std::fill, std::copy #include // std::swap #include // std::abs, std::sqrt, std::pow #include // std::invalid_argument, std::logic_error #include "../Util/TypeTraits.h" namespace Spectra { template class DoubleShiftQR { private: using Index = Eigen::Index; using Matrix = Eigen::Matrix; using Matrix3X = Eigen::Matrix; using Vector = Eigen::Matrix; using IntArray = Eigen::Array; using GenericMatrix = Eigen::Ref; using ConstGenericMatrix = const Eigen::Ref; // A very small value, but 1.0 / m_near_0 does not overflow // ~= 1e-307 for the "double" type static constexpr Scalar m_near_0 = TypeTraits::min() * Scalar(10); // The machine precision, ~= 1e-16 for the "double" type static constexpr Scalar m_eps = TypeTraits::epsilon(); Index m_n; // Dimension of the matrix Matrix m_mat_H; // A copy of the matrix to be factorized Scalar m_shift_s; // Shift constant Scalar m_shift_t; // Shift constant Matrix3X m_ref_u; // Householder reflectors IntArray m_ref_nr; // How many rows does each reflector affects // 3 - A general reflector // 2 - A Givens rotation // 1 - An identity transformation bool m_computed; // Whether matrix has been factorized // Compute sqrt(x1^2 + x2^2 + x3^2) wit high precision static Scalar stable_norm3(Scalar x1, Scalar x2, Scalar x3) { using std::abs; using std::sqrt; x1 = abs(x1); x2 = abs(x2); x3 = abs(x3); // Make x1 >= {x2, x3} if (x1 < x2) std::swap(x1, x2); if (x1 < x3) std::swap(x1, x3); // If x1 is too small, return 0 if (x1 < m_near_0) return Scalar(0); const Scalar r2 = x2 / x1, r3 = x3 / x1; // We choose a cutoff such that cutoff^4 < eps // If max(r2, r3) > cutoff, use the standard way; otherwise use Taylor series expansion // to avoid an explicit sqrt() call that may lose precision const Scalar cutoff = Scalar(0.1) * pow(m_eps, Scalar(0.25)); Scalar r = r2 * r2 + r3 * r3; r = (r2 >= cutoff || r3 >= cutoff) ? sqrt(Scalar(1) + r) : (Scalar(1) + r * (Scalar(0.5) - Scalar(0.125) * r)); // sqrt(1 + t) ~= 1 + t/2 - t^2/8 return x1 * r; } // x[i] <- x[i] / r, r = sqrt(x1^2 + x2^2 + x3^2) // Assume |x1| >= {|x2|, |x3|}, x1 != 0 static void stable_scaling(Scalar& x1, Scalar& x2, Scalar& x3) { using std::abs; using std::pow; using std::sqrt; const Scalar x1sign = (x1 > Scalar(0)) ? Scalar(1) : Scalar(-1); x1 = abs(x1); // Use the same method as in stable_norm3() const Scalar r2 = x2 / x1, r3 = x3 / x1; const Scalar cutoff = Scalar(0.1) * pow(m_eps, Scalar(0.25)); Scalar r = r2 * r2 + r3 * r3; // r = 1/sqrt(1 + r2^2 + r3^2) r = (abs(r2) >= cutoff || abs(r3) >= cutoff) ? Scalar(1) / sqrt(Scalar(1) + r) : (Scalar(1) - r * (Scalar(0.5) - Scalar(0.375) * r)); // 1/sqrt(1 + t) ~= 1 - t * (1/2 - (3/8) * t) x1 = x1sign * r; x2 = r2 * r; x3 = r3 * r; } void compute_reflector(const Scalar& x1, const Scalar& x2, const Scalar& x3, Index ind) { using std::abs; Scalar* u = &m_ref_u.coeffRef(0, ind); unsigned char* nr = m_ref_nr.data(); const Scalar x2m = abs(x2), x3m = abs(x3); // If both x2 and x3 are zero, nr is 1, and we early exit if (x2m < m_near_0 && x3m < m_near_0) { nr[ind] = 1; return; } // In general case the reflector affects 3 rows // If x3 is zero, decrease nr by 1 nr[ind] = (x3m < m_near_0) ? 2 : 3; const Scalar x_norm = (x3m < m_near_0) ? Eigen::numext::hypot(x1, x2) : stable_norm3(x1, x2, x3); // x1' = x1 - rho * ||x|| // rho = -sign(x1), if x1 == 0, we choose rho = 1 const Scalar rho = (x1 <= Scalar(0)) - (x1 > Scalar(0)); const Scalar x1_new = x1 - rho * x_norm, x1m = abs(x1_new); // Copy x to u u[0] = x1_new; u[1] = x2; u[2] = x3; if (x1m >= x2m && x1m >= x3m) { stable_scaling(u[0], u[1], u[2]); } else if (x2m >= x1m && x2m >= x3m) { stable_scaling(u[1], u[0], u[2]); } else { stable_scaling(u[2], u[0], u[1]); } } void compute_reflector(const Scalar* x, Index ind) { compute_reflector(x[0], x[1], x[2], ind); } // Update the block X = H(il:iu, il:iu) void update_block(Index il, Index iu) { // Block size const Index bsize = iu - il + 1; // If block size == 1, there is no need to apply reflectors if (bsize == 1) { m_ref_nr.coeffRef(il) = 1; return; } const Scalar x00 = m_mat_H.coeff(il, il), x01 = m_mat_H.coeff(il, il + 1), x10 = m_mat_H.coeff(il + 1, il), x11 = m_mat_H.coeff(il + 1, il + 1); // m00 = x00 * (x00 - s) + x01 * x10 + t const Scalar m00 = x00 * (x00 - m_shift_s) + x01 * x10 + m_shift_t; // m10 = x10 * (x00 + x11 - s) const Scalar m10 = x10 * (x00 + x11 - m_shift_s); // For block size == 2, do a Givens rotation on M = X * X - s * X + t * I if (bsize == 2) { // This causes nr=2 compute_reflector(m00, m10, 0, il); // Apply the reflector to X apply_PX(m_mat_H.block(il, il, 2, m_n - il), m_n, il); apply_XP(m_mat_H.block(0, il, il + 2, 2), m_n, il); m_ref_nr.coeffRef(il + 1) = 1; return; } // For block size >=3, use the regular strategy // m20 = x21 * x10 const Scalar m20 = m_mat_H.coeff(il + 2, il + 1) * m_mat_H.coeff(il + 1, il); compute_reflector(m00, m10, m20, il); // Apply the first reflector apply_PX(m_mat_H.block(il, il, 3, m_n - il), m_n, il); apply_XP(m_mat_H.block(0, il, il + (std::min)(bsize, Index(4)), 3), m_n, il); // Calculate the following reflectors // If entering this loop, block size is at least 4. for (Index i = 1; i < bsize - 2; i++) { compute_reflector(&m_mat_H.coeffRef(il + i, il + i - 1), il + i); // Apply the reflector to X apply_PX(m_mat_H.block(il + i, il + i - 1, 3, m_n - il - i + 1), m_n, il + i); apply_XP(m_mat_H.block(0, il + i, il + (std::min)(bsize, Index(i + 4)), 3), m_n, il + i); } // The last reflector // This causes nr=2 compute_reflector(m_mat_H.coeff(iu - 1, iu - 2), m_mat_H.coeff(iu, iu - 2), 0, iu - 1); // Apply the reflector to X apply_PX(m_mat_H.block(iu - 1, iu - 2, 2, m_n - iu + 2), m_n, iu - 1); apply_XP(m_mat_H.block(0, iu - 1, il + bsize, 2), m_n, iu - 1); m_ref_nr.coeffRef(iu) = 1; } // P = I - 2 * u * u' = P' // PX = X - 2 * u * (u'X) void apply_PX(GenericMatrix X, Index stride, Index u_ind) const { const Index nr = m_ref_nr.coeff(u_ind); if (nr == 1) return; const Scalar u0 = m_ref_u.coeff(0, u_ind), u1 = m_ref_u.coeff(1, u_ind); const Scalar u0_2 = Scalar(2) * u0, u1_2 = Scalar(2) * u1; const Index nrow = X.rows(); const Index ncol = X.cols(); Scalar* xptr = X.data(); if (nr == 2 || nrow == 2) { for (Index i = 0; i < ncol; i++, xptr += stride) { const Scalar tmp = u0_2 * xptr[0] + u1_2 * xptr[1]; xptr[0] -= tmp * u0; xptr[1] -= tmp * u1; } } else { const Scalar u2 = m_ref_u.coeff(2, u_ind); const Scalar u2_2 = Scalar(2) * u2; for (Index i = 0; i < ncol; i++, xptr += stride) { const Scalar tmp = u0_2 * xptr[0] + u1_2 * xptr[1] + u2_2 * xptr[2]; xptr[0] -= tmp * u0; xptr[1] -= tmp * u1; xptr[2] -= tmp * u2; } } } // x is a pointer to a vector // Px = x - 2 * dot(x, u) * u void apply_PX(Scalar* x, Index u_ind) const { const Index nr = m_ref_nr.coeff(u_ind); if (nr == 1) return; const Scalar u0 = m_ref_u.coeff(0, u_ind), u1 = m_ref_u.coeff(1, u_ind), u2 = m_ref_u.coeff(2, u_ind); // When the reflector only contains two elements, u2 has been set to zero const bool nr_is_2 = (nr == 2); const Scalar dot2 = Scalar(2) * (x[0] * u0 + x[1] * u1 + (nr_is_2 ? 0 : (x[2] * u2))); x[0] -= dot2 * u0; x[1] -= dot2 * u1; if (!nr_is_2) x[2] -= dot2 * u2; } // XP = X - 2 * (X * u) * u' void apply_XP(GenericMatrix X, Index stride, Index u_ind) const { const Index nr = m_ref_nr.coeff(u_ind); if (nr == 1) return; const Scalar u0 = m_ref_u.coeff(0, u_ind), u1 = m_ref_u.coeff(1, u_ind); const Scalar u0_2 = Scalar(2) * u0, u1_2 = Scalar(2) * u1; const int nrow = X.rows(); const int ncol = X.cols(); Scalar *X0 = X.data(), *X1 = X0 + stride; // X0 => X.col(0), X1 => X.col(1) if (nr == 2 || ncol == 2) { // tmp = 2 * u0 * X0 + 2 * u1 * X1 // X0 => X0 - u0 * tmp // X1 => X1 - u1 * tmp for (Index i = 0; i < nrow; i++) { const Scalar tmp = u0_2 * X0[i] + u1_2 * X1[i]; X0[i] -= tmp * u0; X1[i] -= tmp * u1; } } else { Scalar* X2 = X1 + stride; // X2 => X.col(2) const Scalar u2 = m_ref_u.coeff(2, u_ind); const Scalar u2_2 = Scalar(2) * u2; for (Index i = 0; i < nrow; i++) { const Scalar tmp = u0_2 * X0[i] + u1_2 * X1[i] + u2_2 * X2[i]; X0[i] -= tmp * u0; X1[i] -= tmp * u1; X2[i] -= tmp * u2; } } } public: DoubleShiftQR(Index size) : m_n(size), m_computed(false) {} DoubleShiftQR(ConstGenericMatrix& mat, const Scalar& s, const Scalar& t) : m_n(mat.rows()), m_mat_H(m_n, m_n), m_shift_s(s), m_shift_t(t), m_ref_u(3, m_n), m_ref_nr(m_n), m_computed(false) { compute(mat, s, t); } void compute(ConstGenericMatrix& mat, const Scalar& s, const Scalar& t) { using std::abs; m_n = mat.rows(); if (m_n != mat.cols()) throw std::invalid_argument("DoubleShiftQR: matrix must be square"); m_mat_H.resize(m_n, m_n); m_shift_s = s; m_shift_t = t; m_ref_u.resize(3, m_n); m_ref_nr.resize(m_n); // Make a copy of mat m_mat_H.noalias() = mat; // Obtain the indices of zero elements in the subdiagonal, // so that H can be divided into several blocks const Scalar eps_abs = m_near_0 * (m_n / m_eps); constexpr Scalar eps_rel = m_eps; std::vector zero_ind; zero_ind.reserve(m_n - 1); zero_ind.push_back(0); Scalar* Hii = m_mat_H.data(); for (Index i = 0; i < m_n - 1; i++, Hii += (m_n + 1)) { // Hii[0] => m_mat_H(i, i) // Hii[1] => m_mat_H(i + 1, i) // Hii[m_n + 1] => m_mat_H(i + 1, i + 1) const Scalar h = abs(Hii[1]); // Deflate small sub-diagonal elements const Scalar diag = abs(Hii[0]) + abs(Hii[m_n + 1]); if (h <= eps_abs || h <= eps_rel * diag) { Hii[1] = 0; zero_ind.push_back(i + 1); } // Make sure m_mat_H is upper Hessenberg // Zero the elements below m_mat_H(i + 1, i) std::fill(Hii + 2, Hii + m_n - i, Scalar(0)); } zero_ind.push_back(m_n); const Index len = zero_ind.size() - 1; for (Index i = 0; i < len; i++) { const Index start = zero_ind[i]; const Index end = zero_ind[i + 1] - 1; // Compute refelctors and update each block update_block(start, end); } // Deflation on the computed result Hii = m_mat_H.data(); for (Index i = 0; i < m_n - 1; i++, Hii += (m_n + 1)) { const Scalar h = abs(Hii[1]); const Scalar diag = abs(Hii[0]) + abs(Hii[m_n + 1]); if (h <= eps_abs || h <= eps_rel * diag) Hii[1] = 0; } m_computed = true; } void matrix_QtHQ(Matrix& dest) const { if (!m_computed) throw std::logic_error("DoubleShiftQR: need to call compute() first"); dest.noalias() = m_mat_H; } // Q = P0 * P1 * ... // Q'y = P_{n-2} * ... * P1 * P0 * y void apply_QtY(Vector& y) const { if (!m_computed) throw std::logic_error("DoubleShiftQR: need to call compute() first"); Scalar* y_ptr = y.data(); const Index n1 = m_n - 1; for (Index i = 0; i < n1; i++, y_ptr++) { apply_PX(y_ptr, i); } } // Q = P0 * P1 * ... // YQ = Y * P0 * P1 * ... void apply_YQ(GenericMatrix Y) const { if (!m_computed) throw std::logic_error("DoubleShiftQR: need to call compute() first"); const Index nrow = Y.rows(); const Index n2 = m_n - 2; for (Index i = 0; i < n2; i++) { apply_XP(Y.block(0, i, nrow, 3), nrow, i); } apply_XP(Y.block(0, n2, nrow, 2), nrow, n2); } }; } // namespace Spectra #endif // SPECTRA_DOUBLE_SHIFT_QR_H