#include #include #include "Matrix.h" #include "Function.h" #include "Function1D.h" #include "Function2D.h" #include "Function3D.h" #define DISPLAY_MATRIX class Matrix_Test : public ::testing::Test { protected: static void SetUpMatrixTester() { } static void TearDownTestCase() { } void SetUp() { } void TearDown() { } }; TEST_F(Matrix_Test, MatrixCreate) { double *dataA = Aurora::malloc(9); double *dataB = new double[9]; double *dataC = new double[9]; double *dataD = new double[9]; //mkl matrix { Aurora::Matrix A = Aurora::Matrix::New(dataA, 3, 3); EXPECT_EQ(dataA, A.getData()); EXPECT_EQ(9, A.getDataSize()); EXPECT_EQ(2, A.getDims()); EXPECT_EQ(3, A.getDimSize(0)); EXPECT_EQ(3, A.getDimSize(1)); EXPECT_EQ(Aurora::Normal, A.getValueType()); DISPLAY_MATRIX(A); } // double [] matrix { Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB, 3, 3); EXPECT_EQ(dataB, B.getData()); EXPECT_EQ(9, B.getDataSize()); EXPECT_EQ(2, B.getDims()); EXPECT_EQ(3, B.getDimSize(0)); EXPECT_EQ(3, B.getDimSize(1)); EXPECT_EQ(Aurora::Normal, B.getValueType()); DISPLAY_MATRIX(B); } // copy from double [] to mkl matrix { Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataC, 3, 3); EXPECT_NE(dataC, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(3, C.getDimSize(0)); EXPECT_EQ(3, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 2vector { Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataC, 9); EXPECT_NE(dataC, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(9, C.getDimSize(0)); EXPECT_EQ(1, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 2d vector { Aurora::Matrix C = Aurora::Matrix::fromRawData(dataC, 9, 1); EXPECT_EQ(dataC, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(9, C.getDimSize(0)); EXPECT_EQ(1, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 2d vector column major { Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataD, 1, 9); EXPECT_NE(dataD, C.getData()); delete[] dataD; EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(1, C.getDimSize(0)); EXPECT_EQ(9, C.getDimSize(1)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 3d matrix { double *tempData = new double[9]; Aurora::Matrix C = Aurora::Matrix::fromRawData(tempData, 3, 3, 1); EXPECT_EQ(dataD, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(2, C.getDims()); EXPECT_EQ(3, C.getDimSize(0)); EXPECT_EQ(3, C.getDimSize(1)); EXPECT_EQ(1, C.getDimSize(2)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } // 3d matrix 2 { double *tempData = new double[9]; Aurora::Matrix C = Aurora::Matrix::fromRawData(tempData, 3, 1, 3); EXPECT_EQ(dataD, C.getData()); EXPECT_EQ(9, C.getDataSize()); EXPECT_EQ(3, C.getDims()); EXPECT_EQ(3, C.getDimSize(0)); EXPECT_EQ(1, C.getDimSize(1)); EXPECT_EQ(3, C.getDimSize(2)); EXPECT_EQ(Aurora::Normal, C.getValueType()); DISPLAY_MATRIX(C); } } TEST_F(Matrix_Test, matrixSlice) { double *dataA = Aurora::malloc(8); double *dataB = Aurora::malloc(8); double *dataC = Aurora::malloc(8); for (int i = 0; i < 8; ++i) { dataA[i] = (double) (i); dataB[i] = (double) (1); dataC[i] = (double) (9 - i); } Aurora::Matrix A = Aurora::Matrix::New(dataA, 2, 2, 2); Aurora::Matrix B = Aurora::Matrix::New(dataB, 2, 2, 2); Aurora::Matrix C = Aurora::Matrix::New(dataC, 2, 2, 2); //2D slice EXPECT_EQ(4.0, dataA[4]); A(Aurora::$, Aurora::$, 1) = B(0, Aurora::$, Aurora::$); EXPECT_EQ(1, dataA[4]); EXPECT_EQ(3, dataA[3]); A(Aurora::$, 1, Aurora::$) = B(Aurora::$, Aurora::$, 0); EXPECT_EQ(1.0, dataA[3]); EXPECT_EQ(0.0, dataA[0]); A(0, Aurora::$, Aurora::$) = B(Aurora::$, 0, Aurora::$); EXPECT_EQ(1.0, dataA[0]); //vector slice A(0, Aurora::$, 0) = C(0, 0, Aurora::$); EXPECT_EQ(9.0, dataA[0]); A(Aurora::$, 0, 0) = C(0, Aurora::$, 1); EXPECT_EQ(5.0, dataA[0]); //error slice EXPECT_EQ(1, A(Aurora::$, Aurora::$, Aurora::$).toMatrix().getDataSize()); auto D = C(0, 0, 0).toMatrix(); EXPECT_EQ(1, D.getDataSize()); EXPECT_EQ(9, D.getData()[0]); } TEST_F(Matrix_Test, matrixOpertaor) { //3D { double *dataA = new double[8]; double *dataB = new double[8]; double *dataD = new double[8]; for (int i = 0; i < 8; ++i) { dataA[i] = (double) (i); dataB[i] = (double) (2); } Aurora::Matrix A = Aurora::Matrix::fromRawData(dataA, 2, 2, 2); DISPLAY_MATRIX(A); Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB, 2, 2, 2); DISPLAY_MATRIX(B); Aurora::Matrix D = Aurora::Matrix::fromRawData(dataD, 4, 2); DISPLAY_MATRIX(D); auto C = (A * B) - B; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 2); C = A * B / 2.0; EXPECT_EQ(C.getData()[2], 2); C = (A * 8.0 / B) * (B + 1.0) - 2.0 + 8; EXPECT_EQ(C.getData()[2], 30); //Error matrix C = A * D; EXPECT_EQ(C.getDataSize(), 0); } //complex { double *dataA = Aurora::malloc(8, true); double *dataB = Aurora::malloc(8, true); double *dataD = new double[8]; for (int i = 0; i < 16; ++i) { dataA[i] = (double) (i + 1); dataB[i] = (double) (2); if (i < 8) dataD[i] = (double) (2); } Aurora::Matrix A = Aurora::Matrix::New(dataA, 2, 2, 2, Aurora::Complex); DISPLAY_MATRIX(A); Aurora::Matrix B = Aurora::Matrix::New(dataB, 2, 2, 2, Aurora::Complex); DISPLAY_MATRIX(B); Aurora::Matrix D = Aurora::Matrix::fromRawData(dataD, 2, 2, 2); DISPLAY_MATRIX(D); auto C = A + 5.0 - 2.0; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 6); EXPECT_EQ(C.getData()[3], 4); EXPECT_TRUE(C.isComplex()); C = A * B - B; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], -4); EXPECT_EQ(C.getData()[3], 12); EXPECT_TRUE(C.isComplex()); C = A * B - 2.0 + 5.0; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 1); EXPECT_EQ(C.getData()[3], 14); C = A * B / 2.0 * 3.; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], -3); EXPECT_EQ(C.getData()[3], 21); C = A * B / B; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 3); EXPECT_EQ(C.getData()[3], 4); C = A * B / (B * A / A); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 3); EXPECT_EQ(C.getData()[3], 4); C = B * D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 4); EXPECT_EQ(C.getData()[3], 4); C = B / D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 1); EXPECT_EQ(C.getData()[3], 1); C = B + D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 4); EXPECT_EQ(C.getData()[3], 2); C = B - D; DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 0); EXPECT_EQ(C.getData()[3], 2); C = B * (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 4); EXPECT_EQ(C.getData()[3], 4); C = B / (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 1); EXPECT_EQ(C.getData()[3], 1); C = B + (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 4); EXPECT_EQ(C.getData()[3], 2); C = B - (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 0); EXPECT_EQ(C.getData()[3], 2); C = (B * 1.0) * (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 4); EXPECT_EQ(C.getData()[3], 4); C = (B * 1.0) / (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 1); EXPECT_EQ(C.getData()[3], 1); C = (B * 1.0) + (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 4); EXPECT_EQ(C.getData()[3], 2); C = (B * 1.0) - (D * 1.0); DISPLAY_MATRIX(C); EXPECT_EQ(C.getData()[2], 0); EXPECT_EQ(C.getData()[3], 2); } }