#include #include "Function.h" #include "Function2D.h" #include "Function1D.h" //必须在Eigen之前 #include "AuroraDefs.h" #include #include #include using namespace Aurora; double Aurora::immse(const Aurora::Matrix &aImageA, const Aurora::Matrix &aImageB) { if (aImageA.getDims()!=2|| aImageB.getDims()!=2){ std::cerr<<"Fail!immse args must all 2d matrix!"; return 0.0; } if (!aImageB.compareShape(aImageA)){ std::cerr<<"Fail!immse args must be same shape!"; return 0.0; } if (aImageA.getValueType()!=Normal || aImageB.getValueType() != Normal) { std::cerr << "Fail!immse args must be normal value type!"; return 0.0; } int size = aImageA.getDataSize(); auto temp = malloc(size); vdSub(size, aImageA.getData(), aImageB.getData(), temp); vdSqr(size, temp, temp); double result = cblas_dasum(size, temp, 1) / (double) size; free(temp); return result; } Aurora::Matrix Aurora::inv(const Aurora::Matrix &aMatrix) { if (aMatrix.getDims() != 2) { std::cerr << "Fail!inv args must be 2d matrix!"; return aMatrix; } if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) { std::cerr << "Fail!inv args must be square matrix!"; return aMatrix; } if (aMatrix.getValueType() != Normal) { std::cerr << "Fail!inv args must be normal value type!"; return aMatrix; } int size = aMatrix.getDataSize(); int *ipiv = new int[aMatrix.getDimSize(0)]; auto result = malloc(size); cblas_dcopy(size,aMatrix.getData(), 1,result, 1); LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv); LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv); delete[] ipiv; return Matrix::New(result,aMatrix); } Aurora::Matrix Aurora::inv(Aurora::Matrix&& aMatrix) { if (aMatrix.getDims() != 2) { std::cerr << "Fail!inv args must be 2d matrix!"; return aMatrix; } if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) { std::cerr << "Fail!inv args must be square matrix!"; return aMatrix; } if (aMatrix.getValueType() != Normal) { std::cerr << "Fail!inv args must be normal value type!"; return aMatrix; } int *ipiv = new int[aMatrix.getDimSize(0)]; LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv); LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv); delete[] ipiv; return aMatrix; } Matrix Aurora::interp2(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod) { if (aV.getDims() != 2) { return Matrix(); } if (aX1.getDimSize(0) != aY1.getDimSize(0)) { return Matrix(); } int columnNum = aV.getDimSize(1); int rowNum = aV.getDimSize(0); if(aX.getDimSize(0) != columnNum || aY.getDimSize(0) != rowNum) { return Matrix(); } int nx1 = aX1.getDimSize(0); std::shared_ptr resultData = std::shared_ptr(Aurora::malloc(nx1), Aurora::free); for (int i = 0; i < nx1; ++i) { std::shared_ptr xResultData = std::shared_ptr(Aurora::malloc(columnNum), Aurora::free); for(int j =0; j < columnNum; ++j) { xResultData.get()[j] = interp1(aY,aV($,j).toMatrix(),aY1(i).toMatrix(),aMethod).getData()[0]; } Matrix xResult(xResultData,std::vector{columnNum}); resultData.get()[i] = interp1(aX,xResult,aX1(i).toMatrix(),aMethod).getData()[0]; } return Matrix(resultData,std::vector{nx1}); } Matrix Aurora::interpn(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod) { return Aurora::interp2(aY,aX,aV,aY1,aX1,aMethod); } Matrix Aurora::std(const Matrix &aMatrix) { auto std = Aurora::malloc(aMatrix.getDimSize(1) * aMatrix.getDimSize(2)); Matrix src = aMatrix.isComplex() ? Aurora::abs(aMatrix) : aMatrix; for (int i = 0; i < src.getDimSize(1); ++i) { double *p = src.getData() + i * src.getDimSize(0); double mean = cblas_dasum(src.getDimSize(0), p, 1) / src.getDimSize(0); vdSubI(src.getDimSize(0), p, 1, &mean, 0, p, 1); vdSqr(src.getDimSize(0), p, p); std[i] = cblas_dasum(src.getDimSize(0), p, 1) / (src.getDimSize(0) - 1); } vdSqrt(src.getDimSize(1), std, std); return Matrix::New(std,1,aMatrix.getDimSize(1), aMatrix.getDimSize(2)); } Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } switch (direction) { case All: { Eigen::Map retV(aMatrix.getData(),aMatrix.getDataSize()); double * ret = malloc(1); ret[0] = retV.array().minCoeff(); return Matrix::New(ret,1); } case Row: { Eigen::Map srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retMatrix(ret,aMatrix.getDimSize(0),1); retMatrix = srcMatrix.rowwise().minCoeff(); return Matrix::New(ret,aMatrix.getDimSize(0),1); } case Column: { Eigen::Map srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retMatrix(ret,1,aMatrix.getDimSize(1)); retMatrix = srcMatrix.colwise().minCoeff(); return Matrix::New(ret,1,aMatrix.getDimSize(1)); } } } Matrix Aurora::min(const Matrix &aMatrix, const Matrix &aOther) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } if (aOther.getDimSize(2)>1 || aOther.isComplex()) { std::cerr << (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } //same shape if (aMatrix.compareShape(aOther)){ double* output = malloc(aMatrix.getDataSize()); vdFminI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1); return Matrix::New(output,aMatrix); } // one is scalar else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){ double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0]; auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix; double* output = malloc(matrix.getDataSize()); vdFminI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1); return Matrix::New(output,matrix); } else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) { if (aMatrix.getDimSize(1) == 1){ double* output = malloc(aOther.getDataSize()); for (int i = 0; i < aOther.getDimSize(1); ++i) { vdFminI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1, output + aOther.getDimSize(0) * i, 1); } return Matrix::New(output,aOther); } else{ double* output = malloc(aMatrix.getDataSize()); for (int i = 0; i < aMatrix.getDimSize(0); ++i) { vdFminI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0), output + i, aOther.getDimSize(0)); } return Matrix::New(output,aMatrix); } } else{ std::cerr << "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]" << std::endl; return Matrix(); } } Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction) { if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) { std::cerr << (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!") << std::endl; return Matrix(); } switch (direction) { case All: { Eigen::Map retV(aMatrix.getData(),aMatrix.getDataSize()); double * ret = malloc(1); ret[0] = retV.array().maxCoeff(); return Matrix::New(ret,1); } case Row: { Eigen::Map srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retMatrix(ret,aMatrix.getDimSize(0),1); retMatrix = srcMatrix.rowwise().maxCoeff(); return Matrix::New(ret,aMatrix.getDimSize(0),1); } case Column: { Eigen::Map srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1)); double * ret = malloc(aMatrix.getDimSize(0)); Eigen::Map retMatrix(ret,1,aMatrix.getDimSize(1)); retMatrix = srcMatrix.colwise().maxCoeff(); return Matrix::New(ret,1,aMatrix.getDimSize(1)); } } }