Add Spectra.

This commit is contained in:
sunwen
2023-06-02 10:49:02 +08:00
parent ea3496372f
commit c4387f0cf6
50 changed files with 10101 additions and 0 deletions

View File

@@ -0,0 +1,36 @@
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_COMP_INFO_H
#define SPECTRA_COMP_INFO_H
namespace Spectra {
///
/// \ingroup Enumerations
///
/// The enumeration to report the status of computation.
///
enum class CompInfo
{
Successful, ///< Computation was successful.
NotComputed, ///< Used in eigen solvers, indicating that computation
///< has not been conducted. Users should call
///< the `compute()` member function of solvers.
NotConverging, ///< Used in eigen solvers, indicating that some eigenvalues
///< did not converge. The `compute()`
///< function returns the number of converged eigenvalues.
NumericalIssue ///< Used in various matrix factorization classes, for example in
///< Cholesky decomposition it indicates that the
///< matrix is not positive definite.
};
} // namespace Spectra
#endif // SPECTRA_COMP_INFO_H

View File

@@ -0,0 +1,28 @@
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_GEIGS_MODE_H
#define SPECTRA_GEIGS_MODE_H
namespace Spectra {
///
/// \ingroup Enumerations
///
/// The enumeration to specify the mode of generalized eigenvalue solver.
///
enum class GEigsMode
{
Cholesky, ///< Using Cholesky decomposition to solve generalized eigenvalues.
RegularInverse, ///< Regular inverse mode for generalized eigenvalue solver.
ShiftInvert, ///< Shift-and-invert mode for generalized eigenvalue solver.
Buckling, ///< Buckling mode for generalized eigenvalue solver.
Cayley ///< Cayley transformation mode for generalized eigenvalue solver.
};
} // namespace Spectra
#endif // SPECTRA_GEIGS_MODE_H

View File

@@ -0,0 +1,300 @@
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SELECTION_RULE_H
#define SPECTRA_SELECTION_RULE_H
#include <vector> // std::vector
#include <cmath> // std::abs
#include <algorithm> // std::sort
#include <complex> // std::complex
#include <utility> // std::pair
#include <stdexcept> // std::invalid_argument
#include <Eigen/Core>
#include "TypeTraits.h"
namespace Spectra {
///
/// \defgroup Enumerations Enumerations
///
/// Enumeration types for the selection rule of eigenvalues.
///
///
/// \ingroup Enumerations
///
/// The enumeration of selection rules of desired eigenvalues.
///
enum class SortRule
{
LargestMagn, ///< Select eigenvalues with largest magnitude. Magnitude
///< means the absolute value for real numbers and norm for
///< complex numbers. Applies to both symmetric and general
///< eigen solvers.
LargestReal, ///< Select eigenvalues with largest real part. Only for general eigen solvers.
LargestImag, ///< Select eigenvalues with largest imaginary part (in magnitude). Only for general eigen solvers.
LargestAlge, ///< Select eigenvalues with largest algebraic value, considering
///< any negative sign. Only for symmetric eigen solvers.
SmallestMagn, ///< Select eigenvalues with smallest magnitude. Applies to both symmetric and general
///< eigen solvers.
SmallestReal, ///< Select eigenvalues with smallest real part. Only for general eigen solvers.
SmallestImag, ///< Select eigenvalues with smallest imaginary part (in magnitude). Only for general eigen solvers.
SmallestAlge, ///< Select eigenvalues with smallest algebraic value. Only for symmetric eigen solvers.
BothEnds ///< Select eigenvalues half from each end of the spectrum. When
///< `nev` is odd, compute more from the high end. Only for symmetric eigen solvers.
};
/// \cond
// When comparing eigenvalues, we first calculate the "target" to sort.
// For example, if we want to choose the eigenvalues with
// largest magnitude, the target will be -abs(x).
// The minus sign is due to the fact that std::sort() sorts in ascending order.
// Default target: throw an exception
template <typename Scalar, SortRule Rule>
class SortingTarget
{
public:
static ElemType<Scalar> get(const Scalar& val)
{
using std::abs;
throw std::invalid_argument("incompatible selection rule");
return -abs(val);
}
};
// Specialization for SortRule::LargestMagn
// This covers [float, double, complex] x [SortRule::LargestMagn]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::LargestMagn>
{
public:
static ElemType<Scalar> get(const Scalar& val)
{
using std::abs;
return -abs(val);
}
};
// Specialization for SortRule::LargestReal
// This covers [complex] x [SortRule::LargestReal]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::LargestReal>
{
public:
static RealType get(const std::complex<RealType>& val)
{
return -val.real();
}
};
// Specialization for SortRule::LargestImag
// This covers [complex] x [SortRule::LargestImag]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::LargestImag>
{
public:
static RealType get(const std::complex<RealType>& val)
{
using std::abs;
return -abs(val.imag());
}
};
// Specialization for SortRule::LargestAlge
// This covers [float, double] x [SortRule::LargestAlge]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::LargestAlge>
{
public:
static Scalar get(const Scalar& val)
{
return -val;
}
};
// Here SortRule::BothEnds is the same as SortRule::LargestAlge, but
// we need some additional steps, which are done in
// SymEigsSolver.h => retrieve_ritzpair().
// There we move the smallest values to the proper locations.
template <typename Scalar>
class SortingTarget<Scalar, SortRule::BothEnds>
{
public:
static Scalar get(const Scalar& val)
{
return -val;
}
};
// Specialization for SortRule::SmallestMagn
// This covers [float, double, complex] x [SortRule::SmallestMagn]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::SmallestMagn>
{
public:
static ElemType<Scalar> get(const Scalar& val)
{
using std::abs;
return abs(val);
}
};
// Specialization for SortRule::SmallestReal
// This covers [complex] x [SortRule::SmallestReal]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::SmallestReal>
{
public:
static RealType get(const std::complex<RealType>& val)
{
return val.real();
}
};
// Specialization for SortRule::SmallestImag
// This covers [complex] x [SortRule::SmallestImag]
template <typename RealType>
class SortingTarget<std::complex<RealType>, SortRule::SmallestImag>
{
public:
static RealType get(const std::complex<RealType>& val)
{
using std::abs;
return abs(val.imag());
}
};
// Specialization for SortRule::SmallestAlge
// This covers [float, double] x [SortRule::SmallestAlge]
template <typename Scalar>
class SortingTarget<Scalar, SortRule::SmallestAlge>
{
public:
static Scalar get(const Scalar& val)
{
return val;
}
};
// Sort eigenvalues
template <typename T, SortRule Rule>
class SortEigenvalue
{
private:
using Index = Eigen::Index;
using IndexArray = std::vector<Index>;
const T* m_evals;
IndexArray m_index;
public:
// Sort indices according to the eigenvalues they point to
inline bool operator()(Index i, Index j)
{
return SortingTarget<T, Rule>::get(m_evals[i]) < SortingTarget<T, Rule>::get(m_evals[j]);
}
SortEigenvalue(const T* start, Index size) :
m_evals(start), m_index(size)
{
for (Index i = 0; i < size; i++)
{
m_index[i] = i;
}
std::sort(m_index.begin(), m_index.end(), *this);
}
inline IndexArray index() const { return m_index; }
inline void swap(IndexArray& other) { m_index.swap(other); }
};
// Sort values[:len] according to the selection rule, and return the indices
template <typename Scalar>
std::vector<Eigen::Index> argsort(SortRule selection, const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>& values, Eigen::Index len)
{
using Index = Eigen::Index;
// Sort Ritz values and put the wanted ones at the beginning
std::vector<Index> ind;
switch (selection)
{
case SortRule::LargestMagn:
{
SortEigenvalue<Scalar, SortRule::LargestMagn> sorting(values.data(), len);
sorting.swap(ind);
break;
}
case SortRule::BothEnds:
case SortRule::LargestAlge:
{
SortEigenvalue<Scalar, SortRule::LargestAlge> sorting(values.data(), len);
sorting.swap(ind);
break;
}
case SortRule::SmallestMagn:
{
SortEigenvalue<Scalar, SortRule::SmallestMagn> sorting(values.data(), len);
sorting.swap(ind);
break;
}
case SortRule::SmallestAlge:
{
SortEigenvalue<Scalar, SortRule::SmallestAlge> sorting(values.data(), len);
sorting.swap(ind);
break;
}
default:
throw std::invalid_argument("unsupported selection rule");
}
// For SortRule::BothEnds, the eigenvalues are sorted according to the
// SortRule::LargestAlge rule, so we need to move those smallest values to the left
// The order would be
// Largest => Smallest => 2nd largest => 2nd smallest => ...
// We keep this order since the first k values will always be
// the wanted collection, no matter k is nev_updated (used in SymEigsBase::restart())
// or is nev (used in SymEigsBase::sort_ritzpair())
if (selection == SortRule::BothEnds)
{
std::vector<Index> ind_copy(ind);
for (Index i = 0; i < len; i++)
{
// If i is even, pick values from the left (large values)
// If i is odd, pick values from the right (small values)
if (i % 2 == 0)
ind[i] = ind_copy[i / 2];
else
ind[i] = ind_copy[len - 1 - i / 2];
}
}
return ind;
}
// Default vector length
template <typename Scalar>
std::vector<Eigen::Index> argsort(SortRule selection, const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>& values)
{
return argsort<Scalar>(selection, values, values.size());
}
/// \endcond
} // namespace Spectra
#endif // SPECTRA_SELECTION_RULE_H

View File

@@ -0,0 +1,99 @@
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SIMPLE_RANDOM_H
#define SPECTRA_SIMPLE_RANDOM_H
#include <Eigen/Core>
/// \cond
namespace Spectra {
// We need a simple pseudo random number generator here:
// 1. It is used to generate initial and restarted residual vector.
// 2. It is not necessary to be so "random" and advanced. All we hope
// is that the residual vector is not in the space spanned by the
// current Krylov space. This should be met almost surely.
// 3. We don't want to call RNG in C++, since we actually want the
// algorithm to be deterministic. Also, calling RNG in C/C++ is not
// allowed in R packages submitted to CRAN.
// 4. The method should be as simple as possible, so an LCG is enough.
// 5. Based on public domain code by Ray Gardner
// http://stjarnhimlen.se/snippets/rg_rand.c
template <typename Scalar = double>
class SimpleRandom
{
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
static constexpr unsigned int m_a = 16807; // multiplier
static constexpr unsigned long m_max = 2147483647L; // 2^31 - 1
long m_rand; // RNG state
inline long next_long_rand(long seed) const
{
unsigned long lo, hi;
lo = m_a * (long) (seed & 0xFFFF);
hi = m_a * (long) ((unsigned long) seed >> 16);
lo += (hi & 0x7FFF) << 16;
if (lo > m_max)
{
lo &= m_max;
++lo;
}
lo += hi >> 15;
if (lo > m_max)
{
lo &= m_max;
++lo;
}
return (long) lo;
}
public:
SimpleRandom(unsigned long init_seed) :
m_rand(init_seed ? (init_seed & m_max) : 1)
{}
// Return a single random number, ranging from -0.5 to 0.5
Scalar random()
{
m_rand = next_long_rand(m_rand);
return Scalar(m_rand) / Scalar(m_max) - Scalar(0.5);
}
// Fill the given vector with random numbers
// Ranging from -0.5 to 0.5
void random_vec(Vector& vec)
{
const Index len = vec.size();
for (Index i = 0; i < len; i++)
{
m_rand = next_long_rand(m_rand);
vec[i] = Scalar(m_rand);
}
vec.array() = vec.array() / Scalar(m_max) - Scalar(0.5);
}
// Return a vector of random numbers
// Ranging from -0.5 to 0.5
Vector random_vec(const Index len)
{
Vector res(len);
random_vec(res);
return res;
}
};
} // namespace Spectra
/// \endcond
#endif // SPECTRA_SIMPLE_RANDOM_H

View File

@@ -0,0 +1,99 @@
// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_TYPE_TRAITS_H
#define SPECTRA_TYPE_TRAITS_H
#include <Eigen/Core>
#include <limits>
/// \cond
// Clang-Format will have unintended effects:
// static constexpr Scalar(min)()
// So we turn it off here
//
// clang-format off
namespace Spectra {
// For a real value type "Scalar", we want to know its smallest
// positive value, i.e., std::numeric_limits<Scalar>::min().
// However, we must take non-standard value types into account,
// so we rely on Eigen::NumTraits.
//
// Eigen::NumTraits has defined epsilon() and lowest(), but
// lowest() means negative highest(), which is a very small
// negative value.
//
// Therefore, we manually define this limit, and use eplison()^3
// to mimic it for non-standard types.
// Generic definition
template <typename Scalar>
struct TypeTraits
{
static constexpr Scalar epsilon()
{
return Eigen::numext::numeric_limits<Scalar>::epsilon();
}
static constexpr Scalar (min)()
{
return epsilon() * epsilon() * epsilon();
}
};
// Full specialization
template <>
struct TypeTraits<float>
{
static constexpr float epsilon()
{
return std::numeric_limits<float>::epsilon();
}
static constexpr float (min)()
{
return (std::numeric_limits<float>::min)();
}
};
template <>
struct TypeTraits<double>
{
static constexpr double epsilon()
{
return std::numeric_limits<double>::epsilon();
}
static constexpr double (min)()
{
return (std::numeric_limits<double>::min)();
}
};
template <>
struct TypeTraits<long double>
{
static constexpr long double epsilon()
{
return std::numeric_limits<long double>::epsilon();
}
static constexpr long double (min)()
{
return (std::numeric_limits<long double>::min)();
}
};
// Get the element type of a "scalar"
// ElemType<double> => double
// ElemType<std::complex<double>> => double
template <typename T>
using ElemType = typename Eigen::NumTraits<T>::Real;
} // namespace Spectra
/// \endcond
#endif // SPECTRA_TYPE_TRAITS_H

View File

@@ -0,0 +1,16 @@
// Copyright (C) 2020-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_VERSION_H
#define SPECTRA_VERSION_H
#define SPECTRA_MAJOR_VERSION 1
#define SPECTRA_MINOR_VERSION 0
#define SPECTRA_PATCH_VERSION 1
#define SPECTRA_VERSION (SPECTRA_MAJOR_VERSION * 10000 + SPECTRA_MINOR_VERSION * 100 + SPECTRA_PATCH_VERSION)
#endif // SPECTRA_VERSION_H