Add Spectra.
This commit is contained in:
164
thirdparty/include/Spectra/SymEigsSolver.h
vendored
Normal file
164
thirdparty/include/Spectra/SymEigsSolver.h
vendored
Normal file
@@ -0,0 +1,164 @@
|
||||
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef SPECTRA_SYM_EIGS_SOLVER_H
|
||||
#define SPECTRA_SYM_EIGS_SOLVER_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
#include "SymEigsBase.h"
|
||||
#include "Util/SelectionRule.h"
|
||||
#include "MatOp/DenseSymMatProd.h"
|
||||
|
||||
namespace Spectra {
|
||||
|
||||
///
|
||||
/// \ingroup EigenSolver
|
||||
///
|
||||
/// This class implements the eigen solver for real symmetric matrices, i.e.,
|
||||
/// to solve \f$Ax=\lambda x\f$ where \f$A\f$ is symmetric.
|
||||
///
|
||||
/// **Spectra** is designed to calculate a specified number (\f$k\f$)
|
||||
/// of eigenvalues of a large square matrix (\f$A\f$). Usually \f$k\f$ is much
|
||||
/// less than the size of the matrix (\f$n\f$), so that only a few eigenvalues
|
||||
/// and eigenvectors are computed.
|
||||
///
|
||||
/// Rather than providing the whole \f$A\f$ matrix, the algorithm only requires
|
||||
/// the matrix-vector multiplication operation of \f$A\f$. Therefore, users of
|
||||
/// this solver need to supply a class that computes the result of \f$Av\f$
|
||||
/// for any given vector \f$v\f$. The name of this class should be given to
|
||||
/// the template parameter `OpType`, and instance of this class passed to
|
||||
/// the constructor of SymEigsSolver.
|
||||
///
|
||||
/// If the matrix \f$A\f$ is already stored as a matrix object in **Eigen**,
|
||||
/// for example `Eigen::MatrixXd`, then there is an easy way to construct such a
|
||||
/// matrix operation class, by using the built-in wrapper class DenseSymMatProd
|
||||
/// that wraps an existing matrix object in **Eigen**. This is also the
|
||||
/// default template parameter for SymEigsSolver. For sparse matrices, the
|
||||
/// wrapper class SparseSymMatProd can be used similarly.
|
||||
///
|
||||
/// If the users need to define their own matrix-vector multiplication operation
|
||||
/// class, it should define a public type `Scalar` to indicate the element type,
|
||||
/// and implement all the public member functions as in DenseSymMatProd.
|
||||
///
|
||||
/// \tparam OpType The name of the matrix operation class. Users could either
|
||||
/// use the wrapper classes such as DenseSymMatProd and
|
||||
/// SparseSymMatProd, or define their own that implements the type
|
||||
/// definition `Scalar` and all the public member functions as in
|
||||
/// DenseSymMatProd.
|
||||
///
|
||||
/// Below is an example that demonstrates the usage of this class.
|
||||
///
|
||||
/// \code{.cpp}
|
||||
/// #include <Eigen/Core>
|
||||
/// #include <Spectra/SymEigsSolver.h>
|
||||
/// // <Spectra/MatOp/DenseSymMatProd.h> is implicitly included
|
||||
/// #include <iostream>
|
||||
///
|
||||
/// using namespace Spectra;
|
||||
///
|
||||
/// int main()
|
||||
/// {
|
||||
/// // We are going to calculate the eigenvalues of M
|
||||
/// Eigen::MatrixXd A = Eigen::MatrixXd::Random(10, 10);
|
||||
/// Eigen::MatrixXd M = A + A.transpose();
|
||||
///
|
||||
/// // Construct matrix operation object using the wrapper class DenseSymMatProd
|
||||
/// DenseSymMatProd<double> op(M);
|
||||
///
|
||||
/// // Construct eigen solver object, requesting the largest three eigenvalues
|
||||
/// SymEigsSolver<DenseSymMatProd<double>> eigs(op, 3, 6);
|
||||
///
|
||||
/// // Initialize and compute
|
||||
/// eigs.init();
|
||||
/// int nconv = eigs.compute(SortRule::LargestAlge);
|
||||
///
|
||||
/// // Retrieve results
|
||||
/// Eigen::VectorXd evalues;
|
||||
/// if (eigs.info() == CompInfo::Successful)
|
||||
/// evalues = eigs.eigenvalues();
|
||||
///
|
||||
/// std::cout << "Eigenvalues found:\n" << evalues << std::endl;
|
||||
///
|
||||
/// return 0;
|
||||
/// }
|
||||
/// \endcode
|
||||
///
|
||||
/// And here is an example for user-supplied matrix operation class.
|
||||
///
|
||||
/// \code{.cpp}
|
||||
/// #include <Eigen/Core>
|
||||
/// #include <Spectra/SymEigsSolver.h>
|
||||
/// #include <iostream>
|
||||
///
|
||||
/// using namespace Spectra;
|
||||
///
|
||||
/// // M = diag(1, 2, ..., 10)
|
||||
/// class MyDiagonalTen
|
||||
/// {
|
||||
/// public:
|
||||
/// using Scalar = double; // A typedef named "Scalar" is required
|
||||
/// int rows() const { return 10; }
|
||||
/// int cols() const { return 10; }
|
||||
/// // y_out = M * x_in
|
||||
/// void perform_op(double *x_in, double *y_out) const
|
||||
/// {
|
||||
/// for (int i = 0; i < rows(); i++)
|
||||
/// {
|
||||
/// y_out[i] = x_in[i] * (i + 1);
|
||||
/// }
|
||||
/// }
|
||||
/// };
|
||||
///
|
||||
/// int main()
|
||||
/// {
|
||||
/// MyDiagonalTen op;
|
||||
/// SymEigsSolver<MyDiagonalTen> eigs(op, 3, 6);
|
||||
/// eigs.init();
|
||||
/// eigs.compute(SortRule::LargestAlge);
|
||||
/// if (eigs.info() == CompInfo::Successful)
|
||||
/// {
|
||||
/// Eigen::VectorXd evalues = eigs.eigenvalues();
|
||||
/// // Will get (10, 9, 8)
|
||||
/// std::cout << "Eigenvalues found:\n" << evalues << std::endl;
|
||||
/// }
|
||||
///
|
||||
/// return 0;
|
||||
/// }
|
||||
/// \endcode
|
||||
///
|
||||
template <typename OpType = DenseSymMatProd<double>>
|
||||
class SymEigsSolver : public SymEigsBase<OpType, IdentityBOp>
|
||||
{
|
||||
private:
|
||||
using Index = Eigen::Index;
|
||||
|
||||
public:
|
||||
///
|
||||
/// Constructor to create a solver object.
|
||||
///
|
||||
/// \param op The matrix operation object that implements
|
||||
/// the matrix-vector multiplication operation of \f$A\f$:
|
||||
/// calculating \f$Av\f$ for any vector \f$v\f$. Users could either
|
||||
/// create the object from the wrapper class such as DenseSymMatProd, or
|
||||
/// define their own that implements all the public members
|
||||
/// as in DenseSymMatProd.
|
||||
/// \param nev Number of eigenvalues requested. This should satisfy \f$1\le nev \le n-1\f$,
|
||||
/// where \f$n\f$ is the size of matrix.
|
||||
/// \param ncv Parameter that controls the convergence speed of the algorithm.
|
||||
/// Typically a larger `ncv` means faster convergence, but it may
|
||||
/// also result in greater memory use and more matrix operations
|
||||
/// in each iteration. This parameter must satisfy \f$nev < ncv \le n\f$,
|
||||
/// and is advised to take \f$ncv \ge 2\cdot nev\f$.
|
||||
///
|
||||
SymEigsSolver(OpType& op, Index nev, Index ncv) :
|
||||
SymEigsBase<OpType, IdentityBOp>(op, IdentityBOp(), nev, ncv)
|
||||
{}
|
||||
};
|
||||
|
||||
} // namespace Spectra
|
||||
|
||||
#endif // SPECTRA_SYM_EIGS_SOLVER_H
|
||||
Reference in New Issue
Block a user