Add Spectra.

This commit is contained in:
sunwen
2023-06-02 10:49:02 +08:00
parent ea3496372f
commit c4387f0cf6
50 changed files with 10101 additions and 0 deletions

View File

@@ -0,0 +1,87 @@
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SPECTRA_SYM_GEIGS_CHOLESKY_OP_H
#define SPECTRA_SYM_GEIGS_CHOLESKY_OP_H
#include <Eigen/Core>
#include "../DenseSymMatProd.h"
#include "../DenseCholesky.h"
namespace Spectra {
///
/// \ingroup Operators
///
/// This class defines the matrix operation for generalized eigen solver in the
/// Cholesky decomposition mode. It calculates \f$y=L^{-1}A(L')^{-1}x\f$ for any
/// vector \f$x\f$, where \f$L\f$ is the Cholesky decomposition of \f$B\f$.
/// This class is intended for internal use.
///
template <typename OpType = DenseSymMatProd<double>,
typename BOpType = DenseCholesky<double>>
class SymGEigsCholeskyOp
{
public:
using Scalar = typename OpType::Scalar;
private:
using Index = Eigen::Index;
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
const OpType& m_op;
const BOpType& m_Bop;
mutable Vector m_cache; // temporary working space
public:
///
/// Constructor to create the matrix operation object.
///
/// \param op The \f$A\f$ matrix operation object.
/// \param Bop The \f$B\f$ matrix operation object.
///
SymGEigsCholeskyOp(const OpType& op, const BOpType& Bop) :
m_op(op), m_Bop(Bop), m_cache(op.rows())
{}
///
/// Move constructor.
///
SymGEigsCholeskyOp(SymGEigsCholeskyOp&& other) :
m_op(other.m_op), m_Bop(other.m_Bop)
{
// We emulate the move constructor for Vector using Vector::swap()
m_cache.swap(other.m_cache);
}
///
/// Return the number of rows of the underlying matrix.
///
Index rows() const { return m_Bop.rows(); }
///
/// Return the number of columns of the underlying matrix.
///
Index cols() const { return m_Bop.rows(); }
///
/// Perform the matrix operation \f$y=L^{-1}A(L')^{-1}x\f$.
///
/// \param x_in Pointer to the \f$x\f$ vector.
/// \param y_out Pointer to the \f$y\f$ vector.
///
// y_out = inv(L) * A * inv(L') * x_in
void perform_op(const Scalar* x_in, Scalar* y_out) const
{
m_Bop.upper_triangular_solve(x_in, y_out);
m_op.perform_op(y_out, m_cache.data());
m_Bop.lower_triangular_solve(m_cache.data(), y_out);
}
};
} // namespace Spectra
#endif // SPECTRA_SYM_GEIGS_CHOLESKY_OP_H