Add Spectra.
This commit is contained in:
105
thirdparty/include/Spectra/MatOp/internal/SymGEigsCayleyOp.h
vendored
Normal file
105
thirdparty/include/Spectra/MatOp/internal/SymGEigsCayleyOp.h
vendored
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (C) 2020-2022 Yixuan Qiu <yixuan.qiu@cos.name>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef SPECTRA_SYM_GEIGS_CAYLEY_OP_H
|
||||
#define SPECTRA_SYM_GEIGS_CAYLEY_OP_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
#include "../SymShiftInvert.h"
|
||||
#include "../SparseSymMatProd.h"
|
||||
|
||||
namespace Spectra {
|
||||
|
||||
///
|
||||
/// \ingroup Operators
|
||||
///
|
||||
/// This class defines the matrix operation for generalized eigen solver in the
|
||||
/// Cayley mode. It computes \f$y=(A-\sigma B)^{-1}(A+\sigma B)x\f$ for any
|
||||
/// vector \f$x\f$, where \f$A\f$ is a symmetric matrix, \f$B\f$ is positive definite,
|
||||
/// and \f$\sigma\f$ is a real shift.
|
||||
/// This class is intended for internal use.
|
||||
///
|
||||
template <typename OpType = SymShiftInvert<double>,
|
||||
typename BOpType = SparseSymMatProd<double>>
|
||||
class SymGEigsCayleyOp
|
||||
{
|
||||
public:
|
||||
using Scalar = typename OpType::Scalar;
|
||||
|
||||
private:
|
||||
using Index = Eigen::Index;
|
||||
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
|
||||
using MapConstVec = Eigen::Map<const Vector>;
|
||||
using MapVec = Eigen::Map<Vector>;
|
||||
|
||||
OpType& m_op;
|
||||
const BOpType& m_Bop;
|
||||
mutable Vector m_cache; // temporary working space
|
||||
Scalar m_sigma;
|
||||
|
||||
public:
|
||||
///
|
||||
/// Constructor to create the matrix operation object.
|
||||
///
|
||||
/// \param op The \f$(A-\sigma B)^{-1}\f$ matrix operation object.
|
||||
/// \param Bop The \f$B\f$ matrix operation object.
|
||||
///
|
||||
SymGEigsCayleyOp(OpType& op, const BOpType& Bop) :
|
||||
m_op(op), m_Bop(Bop), m_cache(op.rows())
|
||||
{}
|
||||
|
||||
///
|
||||
/// Move constructor.
|
||||
///
|
||||
SymGEigsCayleyOp(SymGEigsCayleyOp&& other) :
|
||||
m_op(other.m_op), m_Bop(other.m_Bop), m_sigma(other.m_sigma)
|
||||
{
|
||||
// We emulate the move constructor for Vector using Vector::swap()
|
||||
m_cache.swap(other.m_cache);
|
||||
}
|
||||
|
||||
///
|
||||
/// Return the number of rows of the underlying matrix.
|
||||
///
|
||||
Index rows() const { return m_op.rows(); }
|
||||
///
|
||||
/// Return the number of columns of the underlying matrix.
|
||||
///
|
||||
Index cols() const { return m_op.rows(); }
|
||||
|
||||
///
|
||||
/// Set the real shift \f$\sigma\f$.
|
||||
///
|
||||
void set_shift(const Scalar& sigma)
|
||||
{
|
||||
m_op.set_shift(sigma);
|
||||
m_sigma = sigma;
|
||||
}
|
||||
|
||||
///
|
||||
/// Perform the matrix operation \f$y=(A-\sigma B)^{-1}(A+\sigma B)x\f$.
|
||||
///
|
||||
/// \param x_in Pointer to the \f$x\f$ vector.
|
||||
/// \param y_out Pointer to the \f$y\f$ vector.
|
||||
///
|
||||
// y_out = inv(A - sigma * B) * (A + sigma * B) * x_in
|
||||
void perform_op(const Scalar* x_in, Scalar* y_out) const
|
||||
{
|
||||
// inv(A - sigma * B) * (A + sigma * B) * x
|
||||
// = inv(A - sigma * B) * (A - sigma * B + 2 * sigma * B) * x
|
||||
// = x + 2 * sigma * inv(A - sigma * B) * B * x
|
||||
m_Bop.perform_op(x_in, m_cache.data());
|
||||
m_op.perform_op(m_cache.data(), y_out);
|
||||
MapConstVec x(x_in, this->rows());
|
||||
MapVec y(y_out, this->rows());
|
||||
y.noalias() = x + (Scalar(2) * m_sigma) * y;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Spectra
|
||||
|
||||
#endif // SPECTRA_SYM_GEIGS_CAYLEY_OP_H
|
||||
Reference in New Issue
Block a user