Add Spectra.
This commit is contained in:
158
thirdparty/include/Spectra/MatOp/internal/ArnoldiOp.h
vendored
Normal file
158
thirdparty/include/Spectra/MatOp/internal/ArnoldiOp.h
vendored
Normal file
@@ -0,0 +1,158 @@
|
||||
// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef SPECTRA_ARNOLDI_OP_H
|
||||
#define SPECTRA_ARNOLDI_OP_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <cmath> // std::sqrt
|
||||
|
||||
namespace Spectra {
|
||||
|
||||
///
|
||||
/// \ingroup Internals
|
||||
/// @{
|
||||
///
|
||||
|
||||
///
|
||||
/// \defgroup Operators Operators
|
||||
///
|
||||
/// Different types of operators.
|
||||
///
|
||||
|
||||
///
|
||||
/// \ingroup Operators
|
||||
///
|
||||
/// Operators used in the Arnoldi factorization.
|
||||
///
|
||||
template <typename Scalar, typename OpType, typename BOpType>
|
||||
class ArnoldiOp
|
||||
{
|
||||
private:
|
||||
using Index = Eigen::Index;
|
||||
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
|
||||
|
||||
const OpType& m_op;
|
||||
const BOpType& m_Bop;
|
||||
mutable Vector m_cache;
|
||||
|
||||
public:
|
||||
ArnoldiOp(const OpType& op, const BOpType& Bop) :
|
||||
m_op(op), m_Bop(Bop), m_cache(op.rows())
|
||||
{}
|
||||
|
||||
// Move constructor
|
||||
ArnoldiOp(ArnoldiOp&& other) :
|
||||
m_op(other.m_op), m_Bop(other.m_Bop)
|
||||
{
|
||||
// We emulate the move constructor for Vector using Vector::swap()
|
||||
m_cache.swap(other.m_cache);
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_op.rows(); }
|
||||
|
||||
// In generalized eigenvalue problem Ax=lambda*Bx, define the inner product to be <x, y> = x'By.
|
||||
// For regular eigenvalue problems, it is the usual inner product <x, y> = x'y
|
||||
|
||||
// Compute <x, y> = x'By
|
||||
// x and y are two vectors
|
||||
template <typename Arg1, typename Arg2>
|
||||
Scalar inner_product(const Arg1& x, const Arg2& y) const
|
||||
{
|
||||
m_Bop.perform_op(y.data(), m_cache.data());
|
||||
return x.dot(m_cache);
|
||||
}
|
||||
|
||||
// Compute res = <X, y> = X'By
|
||||
// X is a matrix, y is a vector, res is a vector
|
||||
template <typename Arg1, typename Arg2>
|
||||
void trans_product(const Arg1& x, const Arg2& y, Eigen::Ref<Vector> res) const
|
||||
{
|
||||
m_Bop.perform_op(y.data(), m_cache.data());
|
||||
res.noalias() = x.transpose() * m_cache;
|
||||
}
|
||||
|
||||
// B-norm of a vector, ||x||_B = sqrt(x'Bx)
|
||||
template <typename Arg>
|
||||
Scalar norm(const Arg& x) const
|
||||
{
|
||||
using std::sqrt;
|
||||
return sqrt(inner_product<Arg, Arg>(x, x));
|
||||
}
|
||||
|
||||
// The "A" operator to generate the Krylov subspace
|
||||
inline void perform_op(const Scalar* x_in, Scalar* y_out) const
|
||||
{
|
||||
m_op.perform_op(x_in, y_out);
|
||||
}
|
||||
};
|
||||
|
||||
///
|
||||
/// \ingroup Operators
|
||||
///
|
||||
/// Placeholder for the B-operator when \f$B = I\f$.
|
||||
///
|
||||
class IdentityBOp
|
||||
{};
|
||||
|
||||
///
|
||||
/// \ingroup Operators
|
||||
///
|
||||
/// Partial specialization for the case \f$B = I\f$.
|
||||
///
|
||||
template <typename Scalar, typename OpType>
|
||||
class ArnoldiOp<Scalar, OpType, IdentityBOp>
|
||||
{
|
||||
private:
|
||||
using Index = Eigen::Index;
|
||||
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
|
||||
|
||||
const OpType& m_op;
|
||||
|
||||
public:
|
||||
ArnoldiOp(const OpType& op, const IdentityBOp& /*Bop*/) :
|
||||
m_op(op)
|
||||
{}
|
||||
|
||||
inline Index rows() const { return m_op.rows(); }
|
||||
|
||||
// Compute <x, y> = x'y
|
||||
// x and y are two vectors
|
||||
template <typename Arg1, typename Arg2>
|
||||
Scalar inner_product(const Arg1& x, const Arg2& y) const
|
||||
{
|
||||
return x.dot(y);
|
||||
}
|
||||
|
||||
// Compute res = <X, y> = X'y
|
||||
// X is a matrix, y is a vector, res is a vector
|
||||
template <typename Arg1, typename Arg2>
|
||||
void trans_product(const Arg1& x, const Arg2& y, Eigen::Ref<Vector> res) const
|
||||
{
|
||||
res.noalias() = x.transpose() * y;
|
||||
}
|
||||
|
||||
// B-norm of a vector. For regular eigenvalue problems it is simply the L2 norm
|
||||
template <typename Arg>
|
||||
Scalar norm(const Arg& x) const
|
||||
{
|
||||
return x.norm();
|
||||
}
|
||||
|
||||
// The "A" operator to generate the Krylov subspace
|
||||
inline void perform_op(const Scalar* x_in, Scalar* y_out) const
|
||||
{
|
||||
m_op.perform_op(x_in, y_out);
|
||||
}
|
||||
};
|
||||
|
||||
///
|
||||
/// @}
|
||||
///
|
||||
|
||||
} // namespace Spectra
|
||||
|
||||
#endif // SPECTRA_ARNOLDI_OP_H
|
||||
Reference in New Issue
Block a user