Add Spectra.
This commit is contained in:
315
thirdparty/include/Spectra/LinAlg/Arnoldi.h
vendored
Normal file
315
thirdparty/include/Spectra/LinAlg/Arnoldi.h
vendored
Normal file
@@ -0,0 +1,315 @@
|
||||
// Copyright (C) 2018-2022 Yixuan Qiu <yixuan.qiu@cos.name>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef SPECTRA_ARNOLDI_H
|
||||
#define SPECTRA_ARNOLDI_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <cmath> // std::sqrt
|
||||
#include <utility> // std::move
|
||||
#include <stdexcept> // std::invalid_argument
|
||||
|
||||
#include "../MatOp/internal/ArnoldiOp.h"
|
||||
#include "../Util/TypeTraits.h"
|
||||
#include "../Util/SimpleRandom.h"
|
||||
#include "UpperHessenbergQR.h"
|
||||
#include "DoubleShiftQR.h"
|
||||
|
||||
namespace Spectra {
|
||||
|
||||
// Arnoldi factorization A * V = V * H + f * e'
|
||||
// A: n x n
|
||||
// V: n x k
|
||||
// H: k x k
|
||||
// f: n x 1
|
||||
// e: [0, ..., 0, 1]
|
||||
// V and H are allocated of dimension m, so the maximum value of k is m
|
||||
template <typename Scalar, typename ArnoldiOpType>
|
||||
class Arnoldi
|
||||
{
|
||||
private:
|
||||
using Index = Eigen::Index;
|
||||
using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
|
||||
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
|
||||
using MapVec = Eigen::Map<Vector>;
|
||||
using MapConstMat = Eigen::Map<const Matrix>;
|
||||
using MapConstVec = Eigen::Map<const Vector>;
|
||||
|
||||
protected:
|
||||
// A very small value, but 1.0 / m_near_0 does not overflow
|
||||
// ~= 1e-307 for the "double" type
|
||||
static constexpr Scalar m_near_0 = TypeTraits<Scalar>::min() * Scalar(10);
|
||||
// The machine precision, ~= 1e-16 for the "double" type
|
||||
static constexpr Scalar m_eps = TypeTraits<Scalar>::epsilon();
|
||||
|
||||
ArnoldiOpType m_op; // Operators for the Arnoldi factorization
|
||||
const Index m_n; // dimension of A
|
||||
const Index m_m; // maximum dimension of subspace V
|
||||
Index m_k; // current dimension of subspace V
|
||||
Matrix m_fac_V; // V matrix in the Arnoldi factorization
|
||||
Matrix m_fac_H; // H matrix in the Arnoldi factorization
|
||||
Vector m_fac_f; // residual in the Arnoldi factorization
|
||||
Scalar m_beta; // ||f||, B-norm of f
|
||||
|
||||
// Given orthonormal basis V (w.r.t. B), find a nonzero vector f such that V'Bf = 0
|
||||
// With rounding errors, we hope V'B(f/||f||) < eps
|
||||
// Assume that f has been properly allocated
|
||||
void expand_basis(MapConstMat& V, const Index seed, Vector& f, Scalar& fnorm, Index& op_counter)
|
||||
{
|
||||
using std::sqrt;
|
||||
|
||||
Vector v(m_n), Vf(V.cols());
|
||||
for (Index iter = 0; iter < 5; iter++)
|
||||
{
|
||||
// Randomly generate a new vector and orthogonalize it against V
|
||||
SimpleRandom<Scalar> rng(seed + 123 * iter);
|
||||
// The first try forces f to be in the range of A
|
||||
if (iter == 0)
|
||||
{
|
||||
rng.random_vec(v);
|
||||
m_op.perform_op(v.data(), f.data());
|
||||
op_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
rng.random_vec(f);
|
||||
}
|
||||
// f <- f - V * V'Bf, so that f is orthogonal to V in B-norm
|
||||
m_op.trans_product(V, f, Vf);
|
||||
f.noalias() -= V * Vf;
|
||||
// fnorm <- ||f||
|
||||
fnorm = m_op.norm(f);
|
||||
|
||||
// Compute V'Bf again
|
||||
m_op.trans_product(V, f, Vf);
|
||||
// Test whether V'B(f/||f||) < eps
|
||||
Scalar ortho_err = Vf.cwiseAbs().maxCoeff();
|
||||
// If not, iteratively correct the residual
|
||||
int count = 0;
|
||||
while (count < 3 && ortho_err >= m_eps * fnorm)
|
||||
{
|
||||
// f <- f - V * Vf
|
||||
f.noalias() -= V * Vf;
|
||||
// beta <- ||f||
|
||||
fnorm = m_op.norm(f);
|
||||
|
||||
m_op.trans_product(V, f, Vf);
|
||||
ortho_err = Vf.cwiseAbs().maxCoeff();
|
||||
count++;
|
||||
}
|
||||
|
||||
// If the condition is satisfied, simply return
|
||||
// Otherwise, go to the next iteration and try a new random vector
|
||||
if (ortho_err < m_eps * fnorm)
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
// Copy an ArnoldiOp
|
||||
Arnoldi(const ArnoldiOpType& op, Index m) :
|
||||
m_op(op), m_n(op.rows()), m_m(m), m_k(0)
|
||||
{}
|
||||
|
||||
// Move an ArnoldiOp
|
||||
Arnoldi(ArnoldiOpType&& op, Index m) :
|
||||
m_op(std::move(op)), m_n(op.rows()), m_m(m), m_k(0)
|
||||
{}
|
||||
|
||||
// Const-reference to internal structures
|
||||
const Matrix& matrix_V() const { return m_fac_V; }
|
||||
const Matrix& matrix_H() const { return m_fac_H; }
|
||||
const Vector& vector_f() const { return m_fac_f; }
|
||||
Scalar f_norm() const { return m_beta; }
|
||||
Index subspace_dim() const { return m_k; }
|
||||
|
||||
// Initialize with an operator and an initial vector
|
||||
void init(MapConstVec& v0, Index& op_counter)
|
||||
{
|
||||
m_fac_V.resize(m_n, m_m);
|
||||
m_fac_H.resize(m_m, m_m);
|
||||
m_fac_f.resize(m_n);
|
||||
m_fac_H.setZero();
|
||||
|
||||
// Verify the initial vector
|
||||
const Scalar v0norm = m_op.norm(v0);
|
||||
if (v0norm < m_near_0)
|
||||
throw std::invalid_argument("initial residual vector cannot be zero");
|
||||
|
||||
// Points to the first column of V
|
||||
MapVec v(m_fac_V.data(), m_n);
|
||||
// Force v to be in the range of A, i.e., v = A * v0
|
||||
m_op.perform_op(v0.data(), v.data());
|
||||
op_counter++;
|
||||
|
||||
// Normalize
|
||||
const Scalar vnorm = m_op.norm(v);
|
||||
v /= vnorm;
|
||||
|
||||
// Compute H and f
|
||||
Vector w(m_n);
|
||||
m_op.perform_op(v.data(), w.data());
|
||||
op_counter++;
|
||||
|
||||
m_fac_H(0, 0) = m_op.inner_product(v, w);
|
||||
m_fac_f.noalias() = w - v * m_fac_H(0, 0);
|
||||
|
||||
// In some cases f is zero in exact arithmetics, but due to rounding errors
|
||||
// it may contain tiny fluctuations. When this happens, we force f to be zero
|
||||
if (m_fac_f.cwiseAbs().maxCoeff() < m_eps)
|
||||
{
|
||||
m_fac_f.setZero();
|
||||
m_beta = Scalar(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_beta = m_op.norm(m_fac_f);
|
||||
}
|
||||
|
||||
// Indicate that this is a step-1 factorization
|
||||
m_k = 1;
|
||||
}
|
||||
|
||||
// Arnoldi factorization starting from step-k
|
||||
virtual void factorize_from(Index from_k, Index to_m, Index& op_counter)
|
||||
{
|
||||
using std::sqrt;
|
||||
|
||||
if (to_m <= from_k)
|
||||
return;
|
||||
|
||||
if (from_k > m_k)
|
||||
{
|
||||
std::string msg = "Arnoldi: from_k (= " + std::to_string(from_k) +
|
||||
") is larger than the current subspace dimension (= " + std::to_string(m_k) + ")";
|
||||
throw std::invalid_argument(msg);
|
||||
}
|
||||
|
||||
const Scalar beta_thresh = m_eps * sqrt(Scalar(m_n));
|
||||
|
||||
// Pre-allocate vectors
|
||||
Vector Vf(to_m);
|
||||
Vector w(m_n);
|
||||
|
||||
// Keep the upperleft k x k submatrix of H and set other elements to 0
|
||||
m_fac_H.rightCols(m_m - from_k).setZero();
|
||||
m_fac_H.block(from_k, 0, m_m - from_k, from_k).setZero();
|
||||
|
||||
for (Index i = from_k; i <= to_m - 1; i++)
|
||||
{
|
||||
bool restart = false;
|
||||
// If beta = 0, then the next V is not full rank
|
||||
// We need to generate a new residual vector that is orthogonal
|
||||
// to the current V, which we call a restart
|
||||
if (m_beta < m_near_0)
|
||||
{
|
||||
MapConstMat V(m_fac_V.data(), m_n, i); // The first i columns
|
||||
expand_basis(V, 2 * i, m_fac_f, m_beta, op_counter);
|
||||
restart = true;
|
||||
}
|
||||
|
||||
// v <- f / ||f||
|
||||
m_fac_V.col(i).noalias() = m_fac_f / m_beta; // The (i+1)-th column
|
||||
|
||||
// Note that H[i+1, i] equals to the unrestarted beta
|
||||
m_fac_H(i, i - 1) = restart ? Scalar(0) : m_beta;
|
||||
|
||||
// w <- A * v, v = m_fac_V.col(i)
|
||||
m_op.perform_op(&m_fac_V(0, i), w.data());
|
||||
op_counter++;
|
||||
|
||||
const Index i1 = i + 1;
|
||||
// First i+1 columns of V
|
||||
MapConstMat Vs(m_fac_V.data(), m_n, i1);
|
||||
// h = m_fac_H(0:i, i)
|
||||
MapVec h(&m_fac_H(0, i), i1);
|
||||
// h <- V'Bw
|
||||
m_op.trans_product(Vs, w, h);
|
||||
|
||||
// f <- w - V * h
|
||||
m_fac_f.noalias() = w - Vs * h;
|
||||
m_beta = m_op.norm(m_fac_f);
|
||||
|
||||
if (m_beta > Scalar(0.717) * m_op.norm(h))
|
||||
continue;
|
||||
|
||||
// f/||f|| is going to be the next column of V, so we need to test
|
||||
// whether V'B(f/||f||) ~= 0
|
||||
m_op.trans_product(Vs, m_fac_f, Vf.head(i1));
|
||||
Scalar ortho_err = Vf.head(i1).cwiseAbs().maxCoeff();
|
||||
// If not, iteratively correct the residual
|
||||
int count = 0;
|
||||
while (count < 5 && ortho_err > m_eps * m_beta)
|
||||
{
|
||||
// There is an edge case: when beta=||f|| is close to zero, f mostly consists
|
||||
// of noises of rounding errors, so the test [ortho_err < eps * beta] is very
|
||||
// likely to fail. In particular, if beta=0, then the test is ensured to fail.
|
||||
// Hence when this happens, we force f to be zero, and then restart in the
|
||||
// next iteration.
|
||||
if (m_beta < beta_thresh)
|
||||
{
|
||||
m_fac_f.setZero();
|
||||
m_beta = Scalar(0);
|
||||
break;
|
||||
}
|
||||
|
||||
// f <- f - V * Vf
|
||||
m_fac_f.noalias() -= Vs * Vf.head(i1);
|
||||
// h <- h + Vf
|
||||
h.noalias() += Vf.head(i1);
|
||||
// beta <- ||f||
|
||||
m_beta = m_op.norm(m_fac_f);
|
||||
|
||||
m_op.trans_product(Vs, m_fac_f, Vf.head(i1));
|
||||
ortho_err = Vf.head(i1).cwiseAbs().maxCoeff();
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
// Indicate that this is a step-m factorization
|
||||
m_k = to_m;
|
||||
}
|
||||
|
||||
// Apply H -> Q'HQ, where Q is from a double shift QR decomposition
|
||||
void compress_H(const DoubleShiftQR<Scalar>& decomp)
|
||||
{
|
||||
decomp.matrix_QtHQ(m_fac_H);
|
||||
m_k -= 2;
|
||||
}
|
||||
|
||||
// Apply H -> Q'HQ, where Q is from an upper Hessenberg QR decomposition
|
||||
void compress_H(const UpperHessenbergQR<Scalar>& decomp)
|
||||
{
|
||||
decomp.matrix_QtHQ(m_fac_H);
|
||||
m_k--;
|
||||
}
|
||||
|
||||
// Apply V -> VQ and compute the new f.
|
||||
// Should be called after compress_H(), since m_k is updated there.
|
||||
// Only need to update the first k+1 columns of V
|
||||
// The first (m - k + i) elements of the i-th column of Q are non-zero,
|
||||
// and the rest are zero
|
||||
void compress_V(const Matrix& Q)
|
||||
{
|
||||
Matrix Vs(m_n, m_k + 1);
|
||||
for (Index i = 0; i < m_k; i++)
|
||||
{
|
||||
const Index nnz = m_m - m_k + i + 1;
|
||||
MapConstVec q(&Q(0, i), nnz);
|
||||
Vs.col(i).noalias() = m_fac_V.leftCols(nnz) * q;
|
||||
}
|
||||
Vs.col(m_k).noalias() = m_fac_V * Q.col(m_k);
|
||||
m_fac_V.leftCols(m_k + 1).noalias() = Vs;
|
||||
|
||||
Vector fk = m_fac_f * Q(m_m - 1, m_k - 1) + m_fac_V.col(m_k) * m_fac_H(m_k, m_k - 1);
|
||||
m_fac_f.swap(fk);
|
||||
m_beta = m_op.norm(m_fac_f);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Spectra
|
||||
|
||||
#endif // SPECTRA_ARNOLDI_H
|
||||
Reference in New Issue
Block a user