Add Spectra.
This commit is contained in:
149
thirdparty/include/Spectra/GenEigsSolver.h
vendored
Normal file
149
thirdparty/include/Spectra/GenEigsSolver.h
vendored
Normal file
@@ -0,0 +1,149 @@
|
||||
// Copyright (C) 2016-2022 Yixuan Qiu <yixuan.qiu@cos.name>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef SPECTRA_GEN_EIGS_SOLVER_H
|
||||
#define SPECTRA_GEN_EIGS_SOLVER_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
#include "GenEigsBase.h"
|
||||
#include "Util/SelectionRule.h"
|
||||
#include "MatOp/DenseGenMatProd.h"
|
||||
|
||||
namespace Spectra {
|
||||
|
||||
///
|
||||
/// \ingroup EigenSolver
|
||||
///
|
||||
/// This class implements the eigen solver for general real matrices, i.e.,
|
||||
/// to solve \f$Ax=\lambda x\f$ for a possibly non-symmetric \f$A\f$ matrix.
|
||||
///
|
||||
/// Most of the background information documented in the SymEigsSolver class
|
||||
/// also applies to the GenEigsSolver class here, except that the eigenvalues
|
||||
/// and eigenvectors of a general matrix can now be complex-valued.
|
||||
///
|
||||
/// \tparam OpType The name of the matrix operation class. Users could either
|
||||
/// use the wrapper classes such as DenseGenMatProd and
|
||||
/// SparseGenMatProd, or define their own that implements the type
|
||||
/// definition `Scalar` and all the public member functions as in
|
||||
/// DenseGenMatProd.
|
||||
///
|
||||
/// An example that illustrates the usage of GenEigsSolver is give below:
|
||||
///
|
||||
/// \code{.cpp}
|
||||
/// #include <Eigen/Core>
|
||||
/// #include <Spectra/GenEigsSolver.h>
|
||||
/// // <Spectra/MatOp/DenseGenMatProd.h> is implicitly included
|
||||
/// #include <iostream>
|
||||
///
|
||||
/// using namespace Spectra;
|
||||
///
|
||||
/// int main()
|
||||
/// {
|
||||
/// // We are going to calculate the eigenvalues of M
|
||||
/// Eigen::MatrixXd M = Eigen::MatrixXd::Random(10, 10);
|
||||
///
|
||||
/// // Construct matrix operation object using the wrapper class
|
||||
/// DenseGenMatProd<double> op(M);
|
||||
///
|
||||
/// // Construct eigen solver object, requesting the largest
|
||||
/// // (in magnitude, or norm) three eigenvalues
|
||||
/// GenEigsSolver<DenseGenMatProd<double>> eigs(op, 3, 6);
|
||||
///
|
||||
/// // Initialize and compute
|
||||
/// eigs.init();
|
||||
/// int nconv = eigs.compute(SortRule::LargestMagn);
|
||||
///
|
||||
/// // Retrieve results
|
||||
/// Eigen::VectorXcd evalues;
|
||||
/// if (eigs.info() == CompInfo::Successful)
|
||||
/// evalues = eigs.eigenvalues();
|
||||
///
|
||||
/// std::cout << "Eigenvalues found:\n" << evalues << std::endl;
|
||||
///
|
||||
/// return 0;
|
||||
/// }
|
||||
/// \endcode
|
||||
///
|
||||
/// And also an example for sparse matrices:
|
||||
///
|
||||
/// \code{.cpp}
|
||||
/// #include <Eigen/Core>
|
||||
/// #include <Eigen/SparseCore>
|
||||
/// #include <Spectra/GenEigsSolver.h>
|
||||
/// #include <Spectra/MatOp/SparseGenMatProd.h>
|
||||
/// #include <iostream>
|
||||
///
|
||||
/// using namespace Spectra;
|
||||
///
|
||||
/// int main()
|
||||
/// {
|
||||
/// // A band matrix with 1 on the main diagonal, 2 on the below-main subdiagonal,
|
||||
/// // and 3 on the above-main subdiagonal
|
||||
/// const int n = 10;
|
||||
/// Eigen::SparseMatrix<double> M(n, n);
|
||||
/// M.reserve(Eigen::VectorXi::Constant(n, 3));
|
||||
/// for (int i = 0; i < n; i++)
|
||||
/// {
|
||||
/// M.insert(i, i) = 1.0;
|
||||
/// if (i > 0)
|
||||
/// M.insert(i - 1, i) = 3.0;
|
||||
/// if (i < n - 1)
|
||||
/// M.insert(i + 1, i) = 2.0;
|
||||
/// }
|
||||
///
|
||||
/// // Construct matrix operation object using the wrapper class SparseGenMatProd
|
||||
/// SparseGenMatProd<double> op(M);
|
||||
///
|
||||
/// // Construct eigen solver object, requesting the largest three eigenvalues
|
||||
/// GenEigsSolver<SparseGenMatProd<double>> eigs(op, 3, 6);
|
||||
///
|
||||
/// // Initialize and compute
|
||||
/// eigs.init();
|
||||
/// int nconv = eigs.compute(SortRule::LargestMagn);
|
||||
///
|
||||
/// // Retrieve results
|
||||
/// Eigen::VectorXcd evalues;
|
||||
/// if (eigs.info() == CompInfo::Successful)
|
||||
/// evalues = eigs.eigenvalues();
|
||||
///
|
||||
/// std::cout << "Eigenvalues found:\n" << evalues << std::endl;
|
||||
///
|
||||
/// return 0;
|
||||
/// }
|
||||
/// \endcode
|
||||
template <typename OpType = DenseGenMatProd<double>>
|
||||
class GenEigsSolver : public GenEigsBase<OpType, IdentityBOp>
|
||||
{
|
||||
private:
|
||||
using Index = Eigen::Index;
|
||||
|
||||
public:
|
||||
///
|
||||
/// Constructor to create a solver object.
|
||||
///
|
||||
/// \param op The matrix operation object that implements
|
||||
/// the matrix-vector multiplication operation of \f$A\f$:
|
||||
/// calculating \f$Av\f$ for any vector \f$v\f$. Users could either
|
||||
/// create the object from the wrapper class such as DenseGenMatProd, or
|
||||
/// define their own that implements all the public members
|
||||
/// as in DenseGenMatProd.
|
||||
/// \param nev Number of eigenvalues requested. This should satisfy \f$1\le nev \le n-2\f$,
|
||||
/// where \f$n\f$ is the size of matrix.
|
||||
/// \param ncv Parameter that controls the convergence speed of the algorithm.
|
||||
/// Typically a larger `ncv` means faster convergence, but it may
|
||||
/// also result in greater memory use and more matrix operations
|
||||
/// in each iteration. This parameter must satisfy \f$nev+2 \le ncv \le n\f$,
|
||||
/// and is advised to take \f$ncv \ge 2\cdot nev + 1\f$.
|
||||
///
|
||||
GenEigsSolver(OpType& op, Index nev, Index ncv) :
|
||||
GenEigsBase<OpType, IdentityBOp>(op, IdentityBOp(), nev, ncv)
|
||||
{}
|
||||
};
|
||||
|
||||
} // namespace Spectra
|
||||
|
||||
#endif // SPECTRA_GEN_EIGS_SOLVER_H
|
||||
Reference in New Issue
Block a user