Add mean and mean's unit test.
This commit is contained in:
@@ -156,6 +156,7 @@ Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) {
|
|||||||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||||
}
|
}
|
||||||
case Column:
|
case Column:
|
||||||
|
default:
|
||||||
{
|
{
|
||||||
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
double * ret = malloc(aMatrix.getDimSize(0));
|
double * ret = malloc(aMatrix.getDimSize(0));
|
||||||
@@ -266,28 +267,139 @@ Matrix Aurora::sum(const Matrix &aMatrix, FunctionDirection direction) {
|
|||||||
{
|
{
|
||||||
case All:
|
case All:
|
||||||
{
|
{
|
||||||
|
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||||||
double * ret = malloc(1);
|
double * ret = malloc(1);
|
||||||
ret[0] = cblas_dasum(aMatrix.getDataSize(),aMatrix.getData(),1);
|
ret[0] = srcV.array().sum();
|
||||||
return Matrix::New(ret,1);
|
return Matrix::New(ret,1);
|
||||||
}
|
}
|
||||||
case Row:
|
case Row:
|
||||||
{
|
{
|
||||||
|
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
double * ret = malloc(aMatrix.getDimSize(0));
|
double * ret = malloc(aMatrix.getDimSize(0));
|
||||||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||||
ret[i] = cblas_dasum(aMatrix.getDimSize(1), aMatrix.getData() + i,
|
retV = srcM.rowwise().sum();
|
||||||
aMatrix.getDimSize(0));
|
|
||||||
}
|
|
||||||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||||
}
|
}
|
||||||
case Column:
|
case Column:
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
double * ret = malloc(aMatrix.getDimSize(0));
|
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
double * ret = malloc(aMatrix.getDimSize(1));
|
||||||
ret[i] = cblas_dasum(aMatrix.getDimSize(0), aMatrix.getData()+aMatrix.getDimSize(0)*i,
|
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||||
1);
|
retV = srcM.colwise().sum();
|
||||||
}
|
|
||||||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void excludeNan(double * aInput, int aInputSize,double* aOutput,int& aOutputSize){
|
||||||
|
aOutputSize = 0;
|
||||||
|
for (int i = 0; i < aInputSize; ++i) {
|
||||||
|
if (std::isnan(aInput[i])) continue;
|
||||||
|
aOutput[aOutputSize]=aInput[i];
|
||||||
|
aOutputSize++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Matrix Aurora::mean(const Matrix &aMatrix, FunctionDirection direction, bool aIncludeNan) {
|
||||||
|
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||||||
|
std::cerr
|
||||||
|
<< (aMatrix.getDimSize(2) > 1 ? "sum() not support 3D data!" : "sum() not support complex value type!")
|
||||||
|
<< std::endl;
|
||||||
|
return Matrix();
|
||||||
|
}
|
||||||
|
if (aIncludeNan){
|
||||||
|
switch (direction)
|
||||||
|
{
|
||||||
|
case All:
|
||||||
|
{
|
||||||
|
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||||||
|
double * ret = malloc(1);
|
||||||
|
ret[0] = srcV.array().mean();
|
||||||
|
return Matrix::New(ret,1);
|
||||||
|
}
|
||||||
|
case Row:
|
||||||
|
{
|
||||||
|
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
|
double * ret = malloc(aMatrix.getDimSize(0));
|
||||||
|
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||||
|
retV = srcM.rowwise().mean();
|
||||||
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||||
|
}
|
||||||
|
case Column:
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
|
double * ret = malloc(aMatrix.getDimSize(1));
|
||||||
|
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||||
|
retV = srcM.colwise().mean();
|
||||||
|
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
switch (direction)
|
||||||
|
{
|
||||||
|
case All:
|
||||||
|
{
|
||||||
|
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||||||
|
double * retVd = malloc(aMatrix.getDataSize());
|
||||||
|
Eigen::Map<Eigen::VectorXd> retV(retVd,aMatrix.getDataSize());
|
||||||
|
Eigen::VectorXd ones = Eigen::VectorXd(aMatrix.getDataSize());
|
||||||
|
ones.setConstant(1.0);
|
||||||
|
retV = srcV.array().isNaN().select(0.0,ones);
|
||||||
|
int count = retV.sum();
|
||||||
|
if (count == 0){
|
||||||
|
free(retVd);
|
||||||
|
double *ret = malloc(1);
|
||||||
|
ret[0]=0;
|
||||||
|
return Matrix::New(ret,1);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
double *ret = malloc(1);
|
||||||
|
retV = srcV.array().isNaN().select(0.0,srcV);
|
||||||
|
ret[0] = retV.sum() / count;
|
||||||
|
free(retVd);
|
||||||
|
return Matrix::New(ret, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
case Row:
|
||||||
|
{
|
||||||
|
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
|
double * retMd = malloc(aMatrix.getDataSize());
|
||||||
|
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
|
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||||||
|
zeros.setConstant(0.0);
|
||||||
|
retM = srcM.array().isNaN().select(zeros,1.0);
|
||||||
|
Eigen::VectorXd countM = retM.rowwise().sum();
|
||||||
|
countM = (countM.array()==0.0).select(1.0,countM);
|
||||||
|
retM = srcM.array().isNaN().select(0.0,srcM);
|
||||||
|
double * ret = malloc(aMatrix.getDimSize(0));
|
||||||
|
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||||
|
retV = retM.rowwise().sum();
|
||||||
|
retV =retV.array()/countM.array();
|
||||||
|
free(retMd);
|
||||||
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||||
|
}
|
||||||
|
case Column:
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
|
double * retMd = malloc(aMatrix.getDataSize());
|
||||||
|
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||||
|
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||||||
|
zeros.setConstant(0.0);
|
||||||
|
retM = srcM.array().isNaN().select(zeros,1.0);
|
||||||
|
Eigen::VectorXd countM = retM.colwise().sum();
|
||||||
|
countM = (countM.array()==0).select(1.0,countM);
|
||||||
|
retM = srcM.array().isNaN().select(0.0,srcM);
|
||||||
|
double * ret = malloc(aMatrix.getDimSize(1));
|
||||||
|
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
|
||||||
|
retV = retM.colwise().sum();
|
||||||
|
retV = retV.array()/countM.array();
|
||||||
|
free(retMd);
|
||||||
|
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -51,6 +51,15 @@ namespace Aurora {
|
|||||||
*/
|
*/
|
||||||
Matrix sum(const Matrix& aMatrix,FunctionDirection direction = Column);
|
Matrix sum(const Matrix& aMatrix,FunctionDirection direction = Column);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 求矩阵平均值,可按行、列、单元, 目前不支持三维,不支持复数
|
||||||
|
* @param aMatrix 矩阵
|
||||||
|
* @param direction 方向,Column, Row, All
|
||||||
|
* @param aIncludeNan 是否包含nan
|
||||||
|
* @return
|
||||||
|
*/
|
||||||
|
Matrix mean(const Matrix& aMatrix,FunctionDirection direction = Column, bool aIncludeNan = true);
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -74,7 +74,7 @@ TEST_F(Function2D_Test, std){
|
|||||||
|
|
||||||
TEST_F(Function2D_Test, min) {
|
TEST_F(Function2D_Test, min) {
|
||||||
double *dataA = new double[3]{1, 2, 3};
|
double *dataA = new double[3]{1, 2, 3};
|
||||||
double *dataB = new double[9]{2, 3, 3, 2, 2, 1, 3, 3, 3};
|
double *dataB = new double[9]{2, 3, 3, 2, 2, -1, 3, 3, 3};
|
||||||
double *dataC = new double[1]{1.5};
|
double *dataC = new double[1]{1.5};
|
||||||
auto A = Aurora::Matrix::fromRawData(dataA, 3, 1);
|
auto A = Aurora::Matrix::fromRawData(dataA, 3, 1);
|
||||||
auto B = Aurora::Matrix::fromRawData(dataB, 3, 3);
|
auto B = Aurora::Matrix::fromRawData(dataB, 3, 3);
|
||||||
@@ -84,18 +84,18 @@ TEST_F(Function2D_Test, min) {
|
|||||||
EXPECT_EQ(1, ret.getDimSize(0));
|
EXPECT_EQ(1, ret.getDimSize(0));
|
||||||
EXPECT_EQ(3, ret.getDimSize(1));
|
EXPECT_EQ(3, ret.getDimSize(1));
|
||||||
EXPECT_DOUBLE_EQ(2, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(2, ret.getData()[0]);
|
||||||
EXPECT_DOUBLE_EQ(1, ret.getData()[1]);
|
EXPECT_DOUBLE_EQ(-1, ret.getData()[1]);
|
||||||
EXPECT_DOUBLE_EQ(3, ret.getData()[2]);
|
EXPECT_DOUBLE_EQ(3, ret.getData()[2]);
|
||||||
ret = Aurora::min(B, Aurora::All);
|
ret = Aurora::min(B, Aurora::All);
|
||||||
EXPECT_DOUBLE_EQ(1, ret.getDataSize());
|
EXPECT_DOUBLE_EQ(1, ret.getDataSize());
|
||||||
EXPECT_DOUBLE_EQ(1, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(-1, ret.getData()[0]);
|
||||||
ret = Aurora::min(B, Aurora::Row);
|
ret = Aurora::min(B, Aurora::Row);
|
||||||
EXPECT_DOUBLE_EQ(3, ret.getDataSize());
|
EXPECT_DOUBLE_EQ(3, ret.getDataSize());
|
||||||
EXPECT_EQ(3, ret.getDimSize(0));
|
EXPECT_EQ(3, ret.getDimSize(0));
|
||||||
EXPECT_EQ(1, ret.getDimSize(1));
|
EXPECT_EQ(1, ret.getDimSize(1));
|
||||||
EXPECT_DOUBLE_EQ(2, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(2, ret.getData()[0]);
|
||||||
EXPECT_DOUBLE_EQ(2, ret.getData()[1]);
|
EXPECT_DOUBLE_EQ(2, ret.getData()[1]);
|
||||||
EXPECT_DOUBLE_EQ(1, ret.getData()[2]);
|
EXPECT_DOUBLE_EQ(-1, ret.getData()[2]);
|
||||||
ret = Aurora::min(A, C);
|
ret = Aurora::min(A, C);
|
||||||
EXPECT_DOUBLE_EQ(3, ret.getDataSize());
|
EXPECT_DOUBLE_EQ(3, ret.getDataSize());
|
||||||
EXPECT_DOUBLE_EQ(1, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(1, ret.getData()[0]);
|
||||||
@@ -132,24 +132,104 @@ TEST_F(Function2D_Test, max) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
TEST_F(Function2D_Test, sum) {
|
TEST_F(Function2D_Test, sum) {
|
||||||
double *dataB = new double[9]{2, 3, 3, 2, 2, 1, 3, 3, 3};
|
double *dataB = new double[9]{2, 3, 3, 2, 2, 1, 3, 3, -3};
|
||||||
auto B = Aurora::Matrix::fromRawData(dataB, 3, 3);
|
auto B = Aurora::Matrix::fromRawData(dataB, 3, 3);
|
||||||
Aurora::Matrix ret = Aurora::sum(B);
|
Aurora::Matrix ret = Aurora::sum(B);
|
||||||
EXPECT_EQ(1, ret.getDimSize(0));
|
EXPECT_EQ(1, ret.getDimSize(0));
|
||||||
EXPECT_EQ(3, ret.getDimSize(1));
|
EXPECT_EQ(3, ret.getDimSize(1));
|
||||||
EXPECT_DOUBLE_EQ(8, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(8, ret.getData()[0]);
|
||||||
EXPECT_DOUBLE_EQ(5, ret.getData()[1]);
|
EXPECT_DOUBLE_EQ(5, ret.getData()[1]);
|
||||||
EXPECT_DOUBLE_EQ(9, ret.getData()[2]);
|
EXPECT_DOUBLE_EQ(3, ret.getData()[2]);
|
||||||
ret = Aurora::sum(B, Aurora::All);
|
ret = Aurora::sum(B, Aurora::All);
|
||||||
EXPECT_DOUBLE_EQ(1, ret.getDataSize());
|
EXPECT_DOUBLE_EQ(1, ret.getDataSize());
|
||||||
EXPECT_DOUBLE_EQ(22, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(16, ret.getData()[0]);
|
||||||
ret = Aurora::sum(B, Aurora::Row);
|
ret = Aurora::sum(B, Aurora::Row);
|
||||||
EXPECT_DOUBLE_EQ(3, ret.getDataSize());
|
EXPECT_DOUBLE_EQ(3, ret.getDataSize());
|
||||||
EXPECT_EQ(3, ret.getDimSize(0));
|
EXPECT_EQ(3, ret.getDimSize(0));
|
||||||
EXPECT_EQ(1, ret.getDimSize(1));
|
EXPECT_EQ(1, ret.getDimSize(1));
|
||||||
EXPECT_DOUBLE_EQ(7, ret.getData()[0]);
|
EXPECT_DOUBLE_EQ(7, ret.getData()[0]);
|
||||||
EXPECT_DOUBLE_EQ(8, ret.getData()[1]);
|
EXPECT_DOUBLE_EQ(8, ret.getData()[1]);
|
||||||
EXPECT_DOUBLE_EQ(7, ret.getData()[2]);
|
EXPECT_DOUBLE_EQ(1, ret.getData()[2]);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(Function2D_Test, mean) {
|
||||||
|
{
|
||||||
|
double *dataB = new double[16]{1.1, 2.6, 3.8, 6.2,
|
||||||
|
4.3, 5.7, 6.9, 10.6,
|
||||||
|
7.1, 8.3, 9.7, 11.2,
|
||||||
|
17.8, 13.3, 26.5, -7.7};
|
||||||
|
auto B = Aurora::Matrix::fromRawData(dataB, 4, 4);
|
||||||
|
auto r = Aurora::mean(B, Aurora::All);
|
||||||
|
EXPECT_EQ(1, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(1, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(7.9625, fourDecimalRound(r.getData()[0]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B);
|
||||||
|
EXPECT_EQ(1, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(4, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(3.4250, fourDecimalRound(r.getData()[0]));
|
||||||
|
EXPECT_DOUBLE_EQ(6.8750, fourDecimalRound(r.getData()[1]));
|
||||||
|
EXPECT_DOUBLE_EQ(9.0750, fourDecimalRound(r.getData()[2]));
|
||||||
|
EXPECT_DOUBLE_EQ(12.4750, fourDecimalRound(r.getData()[3]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B, Aurora::Row);
|
||||||
|
EXPECT_EQ(4, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(1, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(7.5750, fourDecimalRound(r.getData()[0]));
|
||||||
|
EXPECT_DOUBLE_EQ(7.4750, fourDecimalRound(r.getData()[1]));
|
||||||
|
EXPECT_DOUBLE_EQ(11.7250, fourDecimalRound(r.getData()[2]));
|
||||||
|
EXPECT_DOUBLE_EQ(5.0750, fourDecimalRound(r.getData()[3]));
|
||||||
|
}
|
||||||
|
//with nan
|
||||||
|
{
|
||||||
|
double tnan = std::nan("");
|
||||||
|
double *dataB = new double[16]{1.1, 2.6, 3.8, 6.2,
|
||||||
|
4.3, 5.7, 6.9, 10.6,
|
||||||
|
7.1, 8.3, 9.7, 11.2,
|
||||||
|
17.8, 13.3,tnan , -7.7};
|
||||||
|
auto B = Aurora::Matrix::fromRawData(dataB, 4, 4);
|
||||||
|
auto r = Aurora::mean(B, Aurora::All);
|
||||||
|
EXPECT_EQ(1, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(1, r.getDimSize(1));
|
||||||
|
EXPECT_TRUE(std::isnan(r.getData()[0]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B);
|
||||||
|
EXPECT_EQ(1, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(4, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(3.4250, fourDecimalRound(r.getData()[0]));
|
||||||
|
EXPECT_DOUBLE_EQ(6.8750, fourDecimalRound(r.getData()[1]));
|
||||||
|
EXPECT_DOUBLE_EQ(9.0750, fourDecimalRound(r.getData()[2]));
|
||||||
|
EXPECT_TRUE(std::isnan(r.getData()[3]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B, Aurora::Row);
|
||||||
|
EXPECT_EQ(4, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(1, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(7.5750, fourDecimalRound(r.getData()[0]));
|
||||||
|
EXPECT_DOUBLE_EQ(7.4750, fourDecimalRound(r.getData()[1]));
|
||||||
|
EXPECT_TRUE(std::isnan(r.getData()[2]));
|
||||||
|
EXPECT_DOUBLE_EQ(5.0750, fourDecimalRound(r.getData()[3]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B, Aurora::All,false);
|
||||||
|
EXPECT_EQ(1, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(1, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(6.7267, fourDecimalRound(r.getData()[0]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B, Aurora::Column, false);
|
||||||
|
EXPECT_EQ(1, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(4, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(3.4250, fourDecimalRound(r.getData()[0]));
|
||||||
|
EXPECT_DOUBLE_EQ(6.8750, fourDecimalRound(r.getData()[1]));
|
||||||
|
EXPECT_DOUBLE_EQ(9.0750, fourDecimalRound(r.getData()[2]));
|
||||||
|
EXPECT_DOUBLE_EQ(7.8, fourDecimalRound(r.getData()[3]));
|
||||||
|
|
||||||
|
r = Aurora::mean(B, Aurora::Row, false);
|
||||||
|
EXPECT_EQ(4, r.getDimSize(0));
|
||||||
|
EXPECT_EQ(1, r.getDimSize(1));
|
||||||
|
EXPECT_DOUBLE_EQ(7.5750, fourDecimalRound(r.getData()[0]));
|
||||||
|
EXPECT_DOUBLE_EQ(7.4750, fourDecimalRound(r.getData()[1]));
|
||||||
|
EXPECT_DOUBLE_EQ(6.8, fourDecimalRound(r.getData()[2]));
|
||||||
|
EXPECT_DOUBLE_EQ(5.0750, fourDecimalRound(r.getData()[3]));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST_F(Function2D_Test, fftAndComplexAndIfft){
|
TEST_F(Function2D_Test, fftAndComplexAndIfft){
|
||||||
|
|||||||
Reference in New Issue
Block a user