Add mean and mean's unit test.
This commit is contained in:
@@ -156,6 +156,7 @@ Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) {
|
||||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||
}
|
||||
case Column:
|
||||
default:
|
||||
{
|
||||
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * ret = malloc(aMatrix.getDimSize(0));
|
||||
@@ -266,28 +267,139 @@ Matrix Aurora::sum(const Matrix &aMatrix, FunctionDirection direction) {
|
||||
{
|
||||
case All:
|
||||
{
|
||||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||||
double * ret = malloc(1);
|
||||
ret[0] = cblas_dasum(aMatrix.getDataSize(),aMatrix.getData(),1);
|
||||
ret[0] = srcV.array().sum();
|
||||
return Matrix::New(ret,1);
|
||||
}
|
||||
case Row:
|
||||
{
|
||||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * ret = malloc(aMatrix.getDimSize(0));
|
||||
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
||||
ret[i] = cblas_dasum(aMatrix.getDimSize(1), aMatrix.getData() + i,
|
||||
aMatrix.getDimSize(0));
|
||||
}
|
||||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||
retV = srcM.rowwise().sum();
|
||||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||
}
|
||||
case Column:
|
||||
default:
|
||||
{
|
||||
double * ret = malloc(aMatrix.getDimSize(0));
|
||||
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
||||
ret[i] = cblas_dasum(aMatrix.getDimSize(0), aMatrix.getData()+aMatrix.getDimSize(0)*i,
|
||||
1);
|
||||
}
|
||||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * ret = malloc(aMatrix.getDimSize(1));
|
||||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||
retV = srcM.colwise().sum();
|
||||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void excludeNan(double * aInput, int aInputSize,double* aOutput,int& aOutputSize){
|
||||
aOutputSize = 0;
|
||||
for (int i = 0; i < aInputSize; ++i) {
|
||||
if (std::isnan(aInput[i])) continue;
|
||||
aOutput[aOutputSize]=aInput[i];
|
||||
aOutputSize++;
|
||||
}
|
||||
}
|
||||
|
||||
Matrix Aurora::mean(const Matrix &aMatrix, FunctionDirection direction, bool aIncludeNan) {
|
||||
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
||||
std::cerr
|
||||
<< (aMatrix.getDimSize(2) > 1 ? "sum() not support 3D data!" : "sum() not support complex value type!")
|
||||
<< std::endl;
|
||||
return Matrix();
|
||||
}
|
||||
if (aIncludeNan){
|
||||
switch (direction)
|
||||
{
|
||||
case All:
|
||||
{
|
||||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||||
double * ret = malloc(1);
|
||||
ret[0] = srcV.array().mean();
|
||||
return Matrix::New(ret,1);
|
||||
}
|
||||
case Row:
|
||||
{
|
||||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * ret = malloc(aMatrix.getDimSize(0));
|
||||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||
retV = srcM.rowwise().mean();
|
||||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||
}
|
||||
case Column:
|
||||
default:
|
||||
{
|
||||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * ret = malloc(aMatrix.getDimSize(1));
|
||||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||
retV = srcM.colwise().mean();
|
||||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
else{
|
||||
switch (direction)
|
||||
{
|
||||
case All:
|
||||
{
|
||||
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
|
||||
double * retVd = malloc(aMatrix.getDataSize());
|
||||
Eigen::Map<Eigen::VectorXd> retV(retVd,aMatrix.getDataSize());
|
||||
Eigen::VectorXd ones = Eigen::VectorXd(aMatrix.getDataSize());
|
||||
ones.setConstant(1.0);
|
||||
retV = srcV.array().isNaN().select(0.0,ones);
|
||||
int count = retV.sum();
|
||||
if (count == 0){
|
||||
free(retVd);
|
||||
double *ret = malloc(1);
|
||||
ret[0]=0;
|
||||
return Matrix::New(ret,1);
|
||||
}
|
||||
else {
|
||||
double *ret = malloc(1);
|
||||
retV = srcV.array().isNaN().select(0.0,srcV);
|
||||
ret[0] = retV.sum() / count;
|
||||
free(retVd);
|
||||
return Matrix::New(ret, 1);
|
||||
}
|
||||
}
|
||||
case Row:
|
||||
{
|
||||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * retMd = malloc(aMatrix.getDataSize());
|
||||
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||||
zeros.setConstant(0.0);
|
||||
retM = srcM.array().isNaN().select(zeros,1.0);
|
||||
Eigen::VectorXd countM = retM.rowwise().sum();
|
||||
countM = (countM.array()==0.0).select(1.0,countM);
|
||||
retM = srcM.array().isNaN().select(0.0,srcM);
|
||||
double * ret = malloc(aMatrix.getDimSize(0));
|
||||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
|
||||
retV = retM.rowwise().sum();
|
||||
retV =retV.array()/countM.array();
|
||||
free(retMd);
|
||||
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
||||
}
|
||||
case Column:
|
||||
default:
|
||||
{
|
||||
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
double * retMd = malloc(aMatrix.getDataSize());
|
||||
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
||||
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
|
||||
zeros.setConstant(0.0);
|
||||
retM = srcM.array().isNaN().select(zeros,1.0);
|
||||
Eigen::VectorXd countM = retM.colwise().sum();
|
||||
countM = (countM.array()==0).select(1.0,countM);
|
||||
retM = srcM.array().isNaN().select(0.0,srcM);
|
||||
double * ret = malloc(aMatrix.getDimSize(1));
|
||||
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
|
||||
retV = retM.colwise().sum();
|
||||
retV = retV.array()/countM.array();
|
||||
free(retMd);
|
||||
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -51,6 +51,15 @@ namespace Aurora {
|
||||
*/
|
||||
Matrix sum(const Matrix& aMatrix,FunctionDirection direction = Column);
|
||||
|
||||
/**
|
||||
* 求矩阵平均值,可按行、列、单元, 目前不支持三维,不支持复数
|
||||
* @param aMatrix 矩阵
|
||||
* @param direction 方向,Column, Row, All
|
||||
* @param aIncludeNan 是否包含nan
|
||||
* @return
|
||||
*/
|
||||
Matrix mean(const Matrix& aMatrix,FunctionDirection direction = Column, bool aIncludeNan = true);
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user