CreateMatchFilter in main
This commit is contained in:
96
src/main.cxx
96
src/main.cxx
@@ -6,7 +6,6 @@
|
||||
|
||||
#include <complex>
|
||||
|
||||
|
||||
#include "Matrix.h"
|
||||
#include "Function.h"
|
||||
#include "Function1D.h"
|
||||
@@ -14,63 +13,92 @@
|
||||
#include "Function3D.h"
|
||||
#include "MatlabReader.h"
|
||||
|
||||
int main() {
|
||||
int main()
|
||||
{
|
||||
MatlabReader m;
|
||||
Input i;
|
||||
MatchedFilter o;
|
||||
|
||||
m.read(&i,&o,"/home/krad/TestData/testCreateMatchedFilter.mat");
|
||||
bool measuredCEused = true,findDefects = i.mParams->mFindDefects,removeOutliers = i.mRemoveOutliersFromCEMeasured;
|
||||
m.read(&i, &o, "/home/krad/TestData/testCreateMatchedFilter.mat");
|
||||
bool measuredCEused = true, findDefects = i.mParams->mFindDefects, removeOutliers = i.mRemoveOutliersFromCEMeasured;
|
||||
|
||||
Aurora::Matrix mFTime = Aurora::Matrix::fromRawData(i.mCe,4000,2304);
|
||||
if (removeOutliers){
|
||||
Aurora::Matrix mFTime = Aurora::Matrix::fromRawData(i.mCe, 4000, 2304);
|
||||
if (removeOutliers)
|
||||
{
|
||||
auto normSTD = Aurora::std(Aurora::abs(mFTime));
|
||||
Aurora::nantoval(normSTD,0.0);
|
||||
Aurora::nantoval(normSTD, 0.0);
|
||||
auto sortSTD = Aurora::sort(normSTD);
|
||||
int t = (int)std::round(0.4*mFTime.getDimSize(1))-1;
|
||||
t = t<=0?1.0:t;
|
||||
int t = (int)std::round(0.4 * mFTime.getDimSize(1)) - 1;
|
||||
t = t <= 0 ? 1.0 : t;
|
||||
auto absFTime = abs(mFTime);
|
||||
auto maxAbsFTime = max(absFTime);
|
||||
auto maxFlag = maxAbsFTime < (0.1 * max(maxAbsFTime));
|
||||
auto lessFlag = normSTD < sortSTD(0,t).toMatrix();
|
||||
long maxCol,maxRow;
|
||||
max(normSTD,Aurora::Column,maxRow,maxCol);
|
||||
for (int j = 0; j < mFTime.getDimSize(1); ++j) {
|
||||
if((bool)(lessFlag.getData()[j])||(bool)(maxFlag.getData()[j])){
|
||||
mFTime(Aurora::$,j) = mFTime(Aurora::$,maxCol);
|
||||
auto lessFlag = normSTD < sortSTD(0, t).toMatrix();
|
||||
long maxCol, maxRow;
|
||||
max(normSTD, Aurora::Column, maxRow, maxCol);
|
||||
for (int j = 0; j < mFTime.getDimSize(1); ++j)
|
||||
{
|
||||
if ((bool)(lessFlag.getData()[j]) || (bool)(maxFlag.getData()[j]))
|
||||
{
|
||||
mFTime(Aurora::$, j) = mFTime(Aurora::$, maxCol);
|
||||
}
|
||||
}
|
||||
}
|
||||
auto matchedFilter = fft(mFTime);
|
||||
auto sumDiff = Aurora::zeros(1, matchedFilter.getDimSize(1));
|
||||
long minCol = 998, row;
|
||||
|
||||
auto absMatchedFilter = abs(matchedFilter);
|
||||
// auto highNoiseScore = mean(absMatchedFilter) * Aurora::std(absMatchedFilter);
|
||||
auto highNoiseScore = mean( abs(matchedFilter)) * Aurora::std(absMatchedFilter);
|
||||
printf("highNoiseScore[998]: %f4, highNoiseScore[2053]:%f4\r\n",highNoiseScore.getData()[998],highNoiseScore.getData()[2053]);
|
||||
auto highNoiseScore = mean(absMatchedFilter) * Aurora::std(absMatchedFilter);
|
||||
// auto highNoiseScore = mean( abs(matchedFilter)) * Aurora::std(absMatchedFilter);
|
||||
printf("highNoiseScore[998]: %f4, highNoiseScore[2053]:%f4\r\n", highNoiseScore.getData()[998], highNoiseScore.getData()[2053]);
|
||||
auto medianNoise = median(highNoiseScore);
|
||||
printf("median: %f4\r\n",medianNoise.getScalar());
|
||||
long minCol,row;
|
||||
printf("median: %f , should be: 1724817516.8468074\r\n", medianNoise.getScalar());
|
||||
|
||||
min(abs(highNoiseScore - median(highNoiseScore)), Aurora::Column, row, minCol);
|
||||
//
|
||||
minCol = 998;
|
||||
auto sumDiff = Aurora::zeros(1, matchedFilter.getDimSize(1));
|
||||
// minCol = 998;
|
||||
|
||||
auto maxMatchFilter = matchedFilter(Aurora::$, minCol).toMatrix();
|
||||
for (int k = 0; k < matchedFilter.getDimSize(1); ++k) {
|
||||
sumDiff.getData()[k] = sum(abs(matchedFilter(Aurora::$, k).toMatrix()- maxMatchFilter)).getData()[0];
|
||||
for (int k = 0; k < matchedFilter.getDimSize(1); ++k)
|
||||
{
|
||||
sumDiff.getData()[k] = sum(abs(matchedFilter(Aurora::$, k).toMatrix() - maxMatchFilter)).getData()[0];
|
||||
}
|
||||
|
||||
auto indexe = sumDiff > (mean(sumDiff)+2.596 * Aurora::std(sumDiff).getScalar());
|
||||
for (int l = 0; l < indexe.getDataSize(); ++l) {
|
||||
if ((bool)indexe.getData()[l]){
|
||||
matchedFilter(Aurora::$,l) = matchedFilter(Aurora::$,minCol);
|
||||
// printf("meanSumDiff\r\n");
|
||||
// auto meanSumDiff = mean(sumDiff);
|
||||
// printf("meanSumDiff finish\r\n");
|
||||
{
|
||||
double meansumDiff = mean(sumDiff).getScalar() ;
|
||||
double stdSumDiff = Aurora::std(sumDiff).getScalar();
|
||||
double sumDiffJ =meansumDiff + 2.596 * stdSumDiff;
|
||||
// auto indexe = sumDiff > sumDiffJ;
|
||||
printf("indexe finish\r\n");
|
||||
|
||||
for (int l = 0; l < sumDiff.getDataSize(); ++l)
|
||||
{
|
||||
|
||||
if (sumDiff.getData()[l]> sumDiffJ)
|
||||
{
|
||||
matchedFilter(Aurora::$, l) = matchedFilter(Aurora::$, minCol);
|
||||
}
|
||||
}
|
||||
printf("\r\n");
|
||||
}
|
||||
if (measuredCEused){
|
||||
auto mFTime2 = ifft(-matchedFilter);
|
||||
max(Aurora::abs(mFTime2)).printfShape();
|
||||
mFTime2 = mFTime2/repmat(max(Aurora::abs(mFTime2)),mFTime2.getDimSize(0),1);
|
||||
mFTime2 = mFTime2/repmat(sum(Aurora::abs(mFTime2)),mFTime2.getDimSize(0),1);
|
||||
|
||||
|
||||
if (measuredCEused)
|
||||
{
|
||||
auto mFTime2 = real(ifft(-matchedFilter));
|
||||
mFTime2 = mFTime2 / repmat(max(Aurora::abs(mFTime2)), mFTime2.getDimSize(0), 1);
|
||||
mFTime2 = mFTime2 / repmat(sum(Aurora::abs(mFTime2)), mFTime2.getDimSize(0), 1);
|
||||
matchedFilter = fft(mFTime2);
|
||||
}
|
||||
printf("run end\r\n");
|
||||
for (size_t i = 0; i < 10000; i += 500)
|
||||
{
|
||||
printf("index :%d,origin output:%f4,%f4, output:%f4,%f4\r\n",
|
||||
i, o.mReal[i], o.mImag[i], matchedFilter.getData()[i * 2], matchedFilter.getData()[i * 2 + 1]);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user