feat: make cuda version build by USE_CUDA args

This commit is contained in:
kradchen
2024-12-18 17:55:14 +08:00
parent c5a64dccc0
commit 5407c3ccb6
9 changed files with 125 additions and 158 deletions

View File

@@ -1,8 +1,9 @@
#include "AuroraDefs.h"
#include "Function1D.cuh"
#include <complex>
#include <utility>
#ifdef USE_CUDA
#include "Function1D.cuh"
#include "CudaMatrix.h"
#include "Function.h"

View File

@@ -35,55 +35,7 @@ namespace {
uint CONVERT_ADD_VALUE = UINT32_MAX - 4095;
inline void convertValue(float aValue ,float* des){
float value = aValue;
ushort *exponentPtr = (ushort *)&value;
exponentPtr[0] = (exponentPtr[0] >> 11) & CONVERT_AND_VALUE;
exponentPtr[1] = (exponentPtr[1] >> 11) & CONVERT_AND_VALUE;
exponentPtr[2] = (exponentPtr[2] >> 11) & CONVERT_AND_VALUE;
exponentPtr[3] = (exponentPtr[3] >> 11) & CONVERT_AND_VALUE;
float signValue = aValue;
short *signPtr = (short *)&signValue;
uint sign_bit[4] = {
(uint)(signPtr[0] < 0 ? 1 : 0), (uint)(signPtr[1] < 0 ? 1 : 0),
(uint)(signPtr[2] < 0 ? 1 : 0), (uint)(signPtr[3] < 0 ? 1 : 0)};
float fraction3Value = aValue;
ushort *fraction3Ptr = (ushort *)&fraction3Value;
fraction3Ptr[0] &= CONVERT_AND_VALUE_2;
fraction3Ptr[1] &= CONVERT_AND_VALUE_2;
fraction3Ptr[2] &= CONVERT_AND_VALUE_2;
fraction3Ptr[3] &= CONVERT_AND_VALUE_2;
uint hidden_bit[4] = {
sign_bit[0] * (!exponentPtr[0] ? 1 : 0) * CONVERT_MUL_VALUE +
((!sign_bit[0] && exponentPtr[0]) ? 1 : 0) * CONVERT_MUL_VALUE,
sign_bit[1] * (!exponentPtr[1] ? 1 : 0) * 2048 +
((!sign_bit[1] && exponentPtr[1]) ? 1 : 0) * CONVERT_MUL_VALUE,
sign_bit[2] * (!exponentPtr[2] ? 1 : 0) * CONVERT_MUL_VALUE +
((!sign_bit[2] && exponentPtr[2]) ? 1 : 0) * CONVERT_MUL_VALUE,
sign_bit[3] * (!exponentPtr[3] ? 1 : 0) * 2048 +
((!sign_bit[3] && exponentPtr[3]) ? 1 : 0) * CONVERT_MUL_VALUE,
};
int outputPtr[4] = {0};
uint temp = fraction3Ptr[0] + hidden_bit[0] + sign_bit[0] * CONVERT_ADD_VALUE;
outputPtr[0] = exponentPtr[0] > 1 ? (temp << (exponentPtr[0] - 1))
: (temp >> std::abs(exponentPtr[0] - 1));
temp = fraction3Ptr[1] + hidden_bit[1] + sign_bit[1] * CONVERT_ADD_VALUE;
outputPtr[1] = exponentPtr[1] > 1 ? (temp << (exponentPtr[1] - 1))
: (temp >> std::abs(exponentPtr[1] - 1));
temp = fraction3Ptr[2] + hidden_bit[2] + sign_bit[2] * CONVERT_ADD_VALUE;
outputPtr[2] = exponentPtr[2] > 1 ? (temp << (exponentPtr[2] - 1))
: (temp >> std::abs(exponentPtr[2] - 1));
temp = fraction3Ptr[3] + hidden_bit[3] + sign_bit[3] * CONVERT_ADD_VALUE;
outputPtr[3] = exponentPtr[3] > 1 ? (temp << (exponentPtr[3] - 1))
: (temp >> std::abs(exponentPtr[3] - 1));
des[0] = outputPtr[0];
des[1] = outputPtr[1];
des[2] = outputPtr[2];
des[3] = outputPtr[3];
}
inline void convertValue2(short* aValue ,float* des){
inline void convertValue(short* aValue ,float* des){
ushort exponentPtr[4] = {(ushort)aValue[0],(ushort)aValue[1],(ushort)aValue[2],(ushort)aValue[3]};
exponentPtr[0] = (exponentPtr[0] >> 11) & CONVERT_AND_VALUE;
exponentPtr[1] = (exponentPtr[1] >> 11) & CONVERT_AND_VALUE;
@@ -1096,14 +1048,14 @@ Matrix Aurora::convertfp16tofloat(short* aData, int aRows, int aColumns)
#pragma omp parallel for
for (size_t i = 0; i < quaterSize; i+=8) {
//循环展开以避免过度的线程调用
if (i < quaterSize)::convertValue2((short*)(input+i*4), output + (i) * 4);
if (i+1 < quaterSize)::convertValue2((short*)(input+(i+1)*4), output + (i+1) * 4);
if (i+2 < quaterSize)::convertValue2((short*)(input+(i+2)*4), output + (i+2) * 4);
if (i+3 < quaterSize)::convertValue2((short*)(input+(i+3)*4), output + (i+3) * 4);
if (i+4 < quaterSize)::convertValue2((short*)(input+(i+4)*4), output + (i+4) * 4);
if (i+5 < quaterSize)::convertValue2((short*)(input+(i+5)*4), output + (i+5) * 4);
if (i+6 < quaterSize)::convertValue2((short*)(input+(i+6)*4), output + (i+6) * 4);
if (i+7 < quaterSize)::convertValue2((short*)(input+(i+7)*4), output + (i+7) * 4);
if (i < quaterSize)::convertValue((short*)(input+i*4), output + (i) * 4);
if (i+1 < quaterSize)::convertValue((short*)(input+(i+1)*4), output + (i+1) * 4);
if (i+2 < quaterSize)::convertValue((short*)(input+(i+2)*4), output + (i+2) * 4);
if (i+3 < quaterSize)::convertValue((short*)(input+(i+3)*4), output + (i+3) * 4);
if (i+4 < quaterSize)::convertValue((short*)(input+(i+4)*4), output + (i+4) * 4);
if (i+5 < quaterSize)::convertValue((short*)(input+(i+5)*4), output + (i+5) * 4);
if (i+6 < quaterSize)::convertValue((short*)(input+(i+6)*4), output + (i+6) * 4);
if (i+7 < quaterSize)::convertValue((short*)(input+(i+7)*4), output + (i+7) * 4);
}
return Matrix::New(output,aRows,aColumns,1);
}

View File

@@ -124,5 +124,4 @@ namespace Aurora
void compareSet(CudaMatrix& aDesAndCompareMatrix,CudaMatrix& aOtherCompareMatrix, float newValue,CompareOp op);
void compareSet(CudaMatrix& aCompareMatrix,float compareValue, CudaMatrix& aNewValueMatrix,CompareOp op);
}
#endif //AURORA_CUDA_FUNCTION1D_H

View File

@@ -29,7 +29,7 @@
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cusolverDn.h>
#include "Function1D.cuh"
#include "Matrix.h"
#include "cufft.h"

View File

@@ -1,12 +1,14 @@
#include <iostream>
#include "CudaMatrix.h"
#include "Function3D.h"
#include "Function2D.h"
#include "Function.h"
#ifdef USE_CUDA
#include "CudaMatrix.h"
#include "CudaMatrixPrivate.cuh"
#include <cuda_runtime.h>
#endif // USE_CUDA
//必须在Eigen之前
#include "AuroraDefs.h"
@@ -70,30 +72,10 @@ Matrix Aurora::ones(int aRow, int aColumn, int aSlice) {
return Matrix::New(data,rowSize,colSize,aSlice);
}
CudaMatrix Aurora::onesCuda(int aRow, int aColumn, int aSlice){
if (aRow == 0 || aColumn == 0)
{
std::cerr<<"ones function can create matrix with dim unit cont =0";
return CudaMatrix();
}
int rowSize = aRow;
int colSize = aColumn;
int sliceSize = aSlice == 0 ? 1 : aSlice;
size_t arraySize = rowSize * colSize* sliceSize;
float* data = nullptr;
cudaMalloc((void**)&data,arraySize*sizeof(float));
::thrustFill(data,data+arraySize,1.0f);
return CudaMatrix::fromRawData(data,rowSize,colSize,sliceSize);
}
Matrix Aurora::ones(int aSquareRow) {
return Aurora::ones(aSquareRow, aSquareRow);
}
CudaMatrix Aurora::onesCuda(int aSquareRow) {
return Aurora::onesCuda(aSquareRow, aSquareRow);
}
Matrix Aurora::zeros(int aRow, int aColumn, int aSlice) {
if (aRow == 0 || aColumn == 0)
{
@@ -110,31 +92,10 @@ Matrix Aurora::zeros(int aRow, int aColumn, int aSlice) {
return Matrix::New(data,rowSize,colSize,sliceSize);
}
CudaMatrix Aurora::zerosCuda(int aRow, int aColumn, int aSlice) {
if (aRow == 0 || aColumn == 0)
{
std::cerr<<"zeros function can create matrix with dim unit cont =0";
return CudaMatrix();
}
int rowSize = aRow;
int colSize = aColumn;
int sliceSize = aSlice == 0 ? 1 : aSlice;
size_t arraySize = rowSize * colSize* sliceSize;
float* data = nullptr;
cudaMalloc((void**)&data,arraySize*sizeof(float));
::thrustFill(data,data+arraySize,0.0f);
return CudaMatrix::fromRawData(data,rowSize,colSize,sliceSize);
}
Matrix Aurora::zeros(int aSquareRow) {
return Aurora::zeros(aSquareRow, aSquareRow);
}
CudaMatrix Aurora::zerosCuda(int aSquareRow) {
return Aurora::zerosCuda(aSquareRow, aSquareRow);
}
Matrix Aurora::size(const Matrix &aMatrix)
{
if (aMatrix.isScalar()){
@@ -165,50 +126,11 @@ Matrix Aurora::size(const Matrix &aMatrix)
}
}
CudaMatrix Aurora::size(const CudaMatrix &aMatrix){
float * output=nullptr;
if (aMatrix.isScalar()){
cudaMalloc((void**)&output,sizeof(float));
auto outMatrix = CudaMatrix::fromRawData(output,1,1,1);
outMatrix.setValue(0, 1);
return outMatrix;
}
else if (aMatrix.isVector()){
cudaMalloc((void**)&output,sizeof(float)*2);
auto outMatrix = CudaMatrix::fromRawData(output,2,1,1);
outMatrix.setValue(0, aMatrix.getDimSize(0));
outMatrix.setValue(1, aMatrix.getDimSize(1));
return outMatrix;
}
//3D
else if (aMatrix.getDimSize(2)>1){
cudaMalloc((void**)&output,sizeof(float)*3);
auto outMatrix = CudaMatrix::fromRawData(output,3,1,1);
outMatrix.setValue(0,aMatrix.getDimSize(0));
outMatrix.setValue(1,aMatrix.getDimSize(1));
outMatrix.setValue(2,aMatrix.getDimSize(2));
return outMatrix;
}
//2D matrix
else{
cudaMalloc((void**)&output,sizeof(float)*2);
auto outMatrix = CudaMatrix::fromRawData(output,2,1,1);
outMatrix.setValue(0,aMatrix.getDimSize(0));
outMatrix.setValue(1,aMatrix.getDimSize(1));
return outMatrix;
}
}
int Aurora::size(const Matrix &aMatrix,int dims)
{
return aMatrix.getDimSize(dims-1);
}
int Aurora::size(const CudaMatrix &aMatrix,int dims)
{
return aMatrix.getDimSize(dims-1);
}
Matrix Aurora::meshgridInterp3(const Matrix& aX, const Matrix& aY, const Matrix& aZ, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, const Matrix& aZ1,InterpnMethod aMethod, float aExtrapval)
{
std::vector<Matrix> zTemps;
@@ -291,3 +213,85 @@ Matrix Aurora::meshgridInterp3(const Matrix& aX, const Matrix& aY, const Matrix&
return result;
}
#if USE_CUDA
CudaMatrix Aurora::onesCuda(int aRow, int aColumn, int aSlice){
if (aRow == 0 || aColumn == 0)
{
std::cerr<<"ones function can create matrix with dim unit cont =0";
return CudaMatrix();
}
int rowSize = aRow;
int colSize = aColumn;
int sliceSize = aSlice == 0 ? 1 : aSlice;
size_t arraySize = rowSize * colSize* sliceSize;
float* data = nullptr;
cudaMalloc((void**)&data,arraySize*sizeof(float));
::thrustFill(data,data+arraySize,1.0f);
return CudaMatrix::fromRawData(data,rowSize,colSize,sliceSize);
}
CudaMatrix Aurora::onesCuda(int aSquareRow) {
return Aurora::onesCuda(aSquareRow, aSquareRow);
}
CudaMatrix Aurora::zerosCuda(int aRow, int aColumn, int aSlice) {
if (aRow == 0 || aColumn == 0)
{
std::cerr<<"zeros function can create matrix with dim unit cont =0";
return CudaMatrix();
}
int rowSize = aRow;
int colSize = aColumn;
int sliceSize = aSlice == 0 ? 1 : aSlice;
size_t arraySize = rowSize * colSize* sliceSize;
float* data = nullptr;
cudaMalloc((void**)&data,arraySize*sizeof(float));
::thrustFill(data,data+arraySize,0.0f);
return CudaMatrix::fromRawData(data,rowSize,colSize,sliceSize);
}
CudaMatrix Aurora::zerosCuda(int aSquareRow) {
return Aurora::zerosCuda(aSquareRow, aSquareRow);
}
CudaMatrix Aurora::size(const CudaMatrix &aMatrix){
float * output=nullptr;
if (aMatrix.isScalar()){
cudaMalloc((void**)&output,sizeof(float));
auto outMatrix = CudaMatrix::fromRawData(output,1,1,1);
outMatrix.setValue(0, 1);
return outMatrix;
}
else if (aMatrix.isVector()){
cudaMalloc((void**)&output,sizeof(float)*2);
auto outMatrix = CudaMatrix::fromRawData(output,2,1,1);
outMatrix.setValue(0, aMatrix.getDimSize(0));
outMatrix.setValue(1, aMatrix.getDimSize(1));
return outMatrix;
}
//3D
else if (aMatrix.getDimSize(2)>1){
cudaMalloc((void**)&output,sizeof(float)*3);
auto outMatrix = CudaMatrix::fromRawData(output,3,1,1);
outMatrix.setValue(0,aMatrix.getDimSize(0));
outMatrix.setValue(1,aMatrix.getDimSize(1));
outMatrix.setValue(2,aMatrix.getDimSize(2));
return outMatrix;
}
//2D matrix
else{
cudaMalloc((void**)&output,sizeof(float)*2);
auto outMatrix = CudaMatrix::fromRawData(output,2,1,1);
outMatrix.setValue(0,aMatrix.getDimSize(0));
outMatrix.setValue(1,aMatrix.getDimSize(1));
return outMatrix;
}
}
int Aurora::size(const CudaMatrix &aMatrix,int dims)
{
return aMatrix.getDimSize(dims-1);
}
#endif

View File

@@ -4,8 +4,10 @@
#include "Matrix.h"
#include "Function1D.h"
#include "CudaMatrix.h"
#if USE_CUDA
#include "CudaMatrix.h"
#endif
namespace Aurora {
/**
@@ -17,8 +19,6 @@ namespace Aurora {
*/
Matrix ones(int aRow, int aColumn, int aSlice = 0);
CudaMatrix onesCuda(int aRow, int aColumn, int aSlice = 0);
/**
* 创建全部为1的方阵
* @param aSquareRow
@@ -26,8 +26,6 @@ namespace Aurora {
*/
Matrix ones(int aSquareRow);
CudaMatrix onesCuda(int aSquareRow);
/**
* 创建全部为0的数组矩阵
* @param aRow 行数必须大于0
@@ -37,25 +35,30 @@ namespace Aurora {
*/
Matrix zeros(int aRow, int aColumn, int aSlice = 0);
CudaMatrix zerosCuda(int aRow, int aColumn, int aSlice = 0);
/**
* 创建全部为0的方阵
* @param aSquareRow
* @return 全部为0的方阵
*/
Matrix zeros(int aSquareRow);
CudaMatrix zerosCuda(int aSquareRow);
Matrix interp3(const Matrix& aX, const Matrix& aY, const Matrix& aZ, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, const Matrix& aZ1,InterpnMethod aMethod);
Matrix meshgridInterp3(const Matrix& aX, const Matrix& aY, const Matrix& aZ, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, const Matrix& aZ1,InterpnMethod aMethod, float aExtrapval);
Matrix interpn(const Matrix& aX, const Matrix& aY, const Matrix& aZ, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, const Matrix& aZ1,InterpnMethod aMethod);
Matrix size(const Matrix &aMatrix);
CudaMatrix size(const CudaMatrix &aMatrix);
int size(const Matrix &aMatrix,int dims);
int size(const CudaMatrix &aMatrix,int dims);
#if USE_CUDA
CudaMatrix onesCuda(int aRow, int aColumn, int aSlice = 0);
CudaMatrix onesCuda(int aSquareRow);
CudaMatrix zerosCuda(int aRow, int aColumn, int aSlice = 0);
CudaMatrix zerosCuda(int aSquareRow);
CudaMatrix size(const CudaMatrix &aMatrix);
int size(const CudaMatrix &aMatrix,int dims);
#endif
};

View File

@@ -1,6 +1,4 @@
#include "Matrix.h"
#include "CudaMatrix.h"
#include <cmath>
#include <complex>
#include <cstddef>
@@ -21,6 +19,7 @@
#include "Function1D.h"
#ifdef USE_CUDA
#include "CudaMatrix.h"
#include <cuda_runtime.h>
#endif

View File

@@ -10,7 +10,10 @@
namespace Aurora {
const int $ = -1;
#if USE_CUDA
class CudaMatrix;
#endif
class Matrix {
public:
@@ -285,9 +288,10 @@ namespace Aurora {
}
void forceReshape(int rows, int columns, int slices);
#if USE_CUDA
CudaMatrix toDeviceMatrix() const;
#endif
private:
ValueType mValueType = Normal;

View File

@@ -7,15 +7,19 @@
#include <complex>
#include "Matrix.h"
#include "CudaMatrix.h"
#include "Function.h"
#include "Function1D.h"
#include "Function2D.h"
#include "Function3D.h"
#include "MatlabReader.h"
#if USE_CUDA
#include "CudaMatrix.h"
#endif //USE_CUDA
int main()
{
#if USE_CUDA
auto A = Aurora::zeros(1000,1,1);
auto B = Aurora::zeros(1000,1,1);
for (size_t i = 0; i < 1000; i++)
@@ -115,5 +119,6 @@ int main()
}
}
}
#endif //USE_CUDA
return 0;
}