Add complex,real,imag,ceil,round,floor,sqrt,abs,sign and unittest.

This commit is contained in:
sunwen
2023-11-21 10:16:51 +08:00
parent 4edb2d133d
commit 3d68171394
3 changed files with 572 additions and 0 deletions

304
src/Function1D.cu Normal file
View File

@@ -0,0 +1,304 @@
#include "CudaMatrix.h"
#include "Function1D.cuh"
#include "Matrix.h"
#include <cmath>
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <thrust/iterator/constant_iterator.h>
#include <cuda_runtime.h>
using namespace Aurora;
namespace
{
const int THREADS_PER_BLOCK = 256;
}
__global__ void complexKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[2*idx] = aInputData[idx];
aOutput[2*idx + 1] = 0;
}
}
CudaMatrix Aurora::complex(const CudaMatrix& aMatrix)
{
if(aMatrix.isComplex())
{
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * aMatrix.getDataSize() * Aurora::Complex);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
complexKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Aurora::Complex);
}
__global__ void realKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = aInputData[idx*2];
}
}
CudaMatrix Aurora::real(const CudaMatrix& aMatrix)
{
if(!aMatrix.isComplex())
{
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * aMatrix.getDataSize());
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
realKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Aurora::Normal);
}
__global__ void imageKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = aInputData[idx*2 + 1];
}
}
CudaMatrix Aurora::imag(const CudaMatrix& aMatrix)
{
if(!aMatrix.isComplex())
{
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * aMatrix.getDataSize());
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
imageKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Aurora::Normal);
}
__global__ void ceilKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::ceil(aInputData[idx]);
}
}
CudaMatrix Aurora::ceil(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
ceilKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::ceil(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
ceilKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void roundKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::round(aInputData[idx]);
}
}
CudaMatrix Aurora::round(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
roundKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::round(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
roundKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void floorKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::floor(aInputData[idx]);
}
}
CudaMatrix Aurora::floor(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
floorKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::floor(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
floorKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void sqrtKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::sqrt(aInputData[idx]);
}
}
CudaMatrix Aurora::sqrt(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
sqrtKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::sqrt(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
sqrtKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void absKernel(float* aInputData, float* aOutput, unsigned int aSize, bool aIsComplex)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
if(aIsComplex)
{
aOutput[idx] = sqrt(aInputData[2*idx] * aInputData[2*idx] + aInputData[2*idx+1] * aInputData[2*idx+1]);
}
else
{
aOutput[idx] = abs(aInputData[idx]);
}
}
}
CudaMatrix Aurora::abs(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
absKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size, aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2));
}
CudaMatrix Aurora::abs(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
absKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, size, aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2));
}
__global__ void signKernel(float* aInputData, float* aOutput, unsigned int aSize, bool aIsComplex)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
if(aIsComplex)
{
float absValue = sqrt(aInputData[2*idx] * aInputData[2*idx] + aInputData[2*idx + 1] * aInputData[2*idx + 1]);
aOutput[2*idx] = aInputData[2*idx] / absValue;
aOutput[2*idx + 1] = aInputData[2*idx + 1] / absValue;
return;
}
if(aInputData[idx] < 0)
{
aOutput[idx] = -1;
}
else if(aInputData[idx] > 0)
{
aOutput[idx] = 1;
}
else
{
aOutput[idx] = 0;
}
}
}
CudaMatrix Aurora::sign(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
signKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::sign(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
signKernel<<<THREADS_PER_BLOCK, blocksPerGrid>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}

44
src/Function1D.cuh Normal file
View File

@@ -0,0 +1,44 @@
#ifndef AURORA_CUDA_FUNCTION1D_H
#define AURORA_CUDA_FUNCTION1D_H
#include "CudaMatrix.h"
namespace Aurora
{
CudaMatrix complex(const CudaMatrix& aMatrix);
CudaMatrix real(const CudaMatrix& aMatrix);
CudaMatrix imag(const CudaMatrix& aMatrix);
CudaMatrix ceil(const CudaMatrix& aMatrix);
CudaMatrix ceil(const CudaMatrix&& aMatrix);
CudaMatrix round(const CudaMatrix& aMatrix);
CudaMatrix round(const CudaMatrix&& aMatrix);
CudaMatrix floor(const CudaMatrix& aMatrix);
CudaMatrix floor(const CudaMatrix&& aMatrix);
/**
* 开根号,暂时只支持正整数
* @param matrix
* @return
*/
CudaMatrix sqrt(const CudaMatrix& aMatrix);
CudaMatrix sqrt(const CudaMatrix&& aMatrix);
CudaMatrix abs(const CudaMatrix& aMatrix);
CudaMatrix abs(const CudaMatrix&& aMatrix);
CudaMatrix sign(const CudaMatrix& aMatrix);
CudaMatrix sign(const CudaMatrix&& aMatrix);
}
#endif //AURORA_CUDA_FUNCTION1D_H

View File

@@ -0,0 +1,224 @@
#include <gtest/gtest.h>
#include "CudaMatrix.h"
#include "Matrix.h"
#include "TestUtility.h"
#include "Function1D.h"
#include "Function1D.cuh"
class Function1D_Cuda_Test:public ::testing::Test
{
protected:
static void SetUpFunction1DCudaTester(){
}
static void TearDownTestCase(){
}
void SetUp(){
}
void TearDown(){
}
};
TEST_F(Function1D_Cuda_Test, complex)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1,2,3,4,5,6,7,8}, 2,2,2);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::complex(hostMatrix);
auto result2 = Aurora::complex(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Complex);
for(size_t i=0; i<result1.getDataSize() * 2; ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, real)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1,2,3,4,5,6,7,8}, 2,2,1,Aurora::Complex);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::real(hostMatrix);
auto result2 = Aurora::real(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, imag)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1,2,3,4,5,6,7,8}, 2,2,1,Aurora::Complex);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::imag(hostMatrix);
auto result2 = Aurora::imag(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, ceil)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,4);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::ceil(hostMatrix);
auto result2 = Aurora::ceil(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,2,1,Aurora::Complex);
deviceMatrix = hostMatrix.toDeviceMatrix();
result1 = Aurora::ceil(hostMatrix);
result2 = Aurora::ceil(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Complex);
for(size_t i=0; i<result1.getDataSize() * result1.getValueType(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, round)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,4);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::round(hostMatrix);
auto result2 = Aurora::round(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,2,1,Aurora::Complex);
deviceMatrix = hostMatrix.toDeviceMatrix();
result1 = Aurora::round(hostMatrix);
result2 = Aurora::round(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Complex);
for(size_t i=0; i<result1.getDataSize() * result1.getValueType(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, floor)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,4);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::floor(hostMatrix);
auto result2 = Aurora::floor(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,2,1,Aurora::Complex);
deviceMatrix = hostMatrix.toDeviceMatrix();
result1 = Aurora::floor(hostMatrix);
result2 = Aurora::floor(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Complex);
for(size_t i=0; i<result1.getDataSize() * result1.getValueType(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, sqrt)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,4);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::sqrt(hostMatrix);
auto result2 = Aurora::sqrt(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,2,1,Aurora::Complex);
deviceMatrix = hostMatrix.toDeviceMatrix();
result1 = Aurora::sqrt(hostMatrix);
result2 = Aurora::sqrt(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Complex);
for(size_t i=0; i<result1.getDataSize() * result1.getValueType(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, abs)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,4);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::abs(hostMatrix);
auto result2 = Aurora::abs(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,2,1,Aurora::Complex);
deviceMatrix = hostMatrix.toDeviceMatrix();
result1 = Aurora::abs(hostMatrix);
result2 = Aurora::abs(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize() * result1.getValueType(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}
TEST_F(Function1D_Cuda_Test, sign)
{
Aurora::Matrix hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,4);
Aurora::CudaMatrix deviceMatrix = hostMatrix.toDeviceMatrix();
auto result1 = Aurora::sign(hostMatrix);
auto result2 = Aurora::sign(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 8);
EXPECT_EQ(result2.getValueType(), Aurora::Normal);
for(size_t i=0; i<result1.getDataSize(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
hostMatrix = Aurora::Matrix::fromRawData(new float[8]{1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8}, 2,2,1,Aurora::Complex);
deviceMatrix = hostMatrix.toDeviceMatrix();
result1 = Aurora::sign(hostMatrix);
result2 = Aurora::sign(deviceMatrix).toHostMatrix();
EXPECT_EQ(result2.getDataSize(), 4);
EXPECT_EQ(result2.getValueType(), Aurora::Complex);
for(size_t i=0; i<result1.getDataSize() * result1.getValueType(); ++i)
{
EXPECT_EQ(result1[i], result2[i]);
}
}