Files
Aurora/src/Function2D.cpp

792 lines
30 KiB
C++
Raw Normal View History

2023-04-20 17:35:03 +08:00
#include <iostream>
#include "Function.h"
#include "Function2D.h"
2023-04-23 09:30:47 +08:00
#include "Function1D.h"
2023-04-23 16:01:53 +08:00
//必须在Eigen之前
#include "AuroraDefs.h"
#include <Eigen/Core>
#include <Eigen/Eigen>
#include <Eigen/Dense>
2023-04-20 17:35:03 +08:00
using namespace Aurora;
2023-04-20 17:35:03 +08:00
double Aurora::immse(const Aurora::Matrix &aImageA, const Aurora::Matrix &aImageB) {
if (aImageA.getDims()!=2|| aImageB.getDims()!=2){
std::cerr<<"Fail!immse args must all 2d matrix!";
return 0.0;
}
if (!aImageB.compareShape(aImageA)){
std::cerr<<"Fail!immse args must be same shape!";
return 0.0;
}
if (aImageA.getValueType()!=Normal || aImageB.getValueType() != Normal) {
std::cerr << "Fail!immse args must be normal value type!";
return 0.0;
}
int size = aImageA.getDataSize();
auto temp = malloc(size);
vdSub(size, aImageA.getData(), aImageB.getData(), temp);
vdSqr(size, temp, temp);
double result = cblas_dasum(size, temp, 1) / (double) size;
free(temp);
return result;
}
Aurora::Matrix Aurora::inv(const Aurora::Matrix &aMatrix) {
if (aMatrix.getDims() != 2) {
std::cerr << "Fail!inv args must be 2d matrix!";
return aMatrix;
}
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
std::cerr << "Fail!inv args must be square matrix!";
return aMatrix;
}
if (aMatrix.getValueType() != Normal) {
std::cerr << "Fail!inv args must be normal value type!";
return aMatrix;
}
int size = aMatrix.getDataSize();
int *ipiv = new int[aMatrix.getDimSize(0)];
auto result = malloc(size);
2023-04-21 17:04:09 +08:00
cblas_dcopy(size,aMatrix.getData(), 1,result, 1);
2023-04-20 17:35:03 +08:00
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
delete[] ipiv;
return Matrix::New(result,aMatrix);
}
Aurora::Matrix Aurora::inv(Aurora::Matrix&& aMatrix) {
if (aMatrix.getDims() != 2) {
std::cerr << "Fail!inv args must be 2d matrix!";
return aMatrix;
}
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
std::cerr << "Fail!inv args must be square matrix!";
return aMatrix;
}
if (aMatrix.getValueType() != Normal) {
std::cerr << "Fail!inv args must be normal value type!";
return aMatrix;
}
int *ipiv = new int[aMatrix.getDimSize(0)];
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
delete[] ipiv;
return aMatrix;
}
2023-04-20 15:34:38 +08:00
Matrix Aurora::interp2(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
{
if (aV.getDims() != 2)
{
return Matrix();
}
if (aX1.getDimSize(0) != aY1.getDimSize(0))
{
return Matrix();
}
int columnNum = aV.getDimSize(1);
int rowNum = aV.getDimSize(0);
if(aX.getDimSize(0) != columnNum || aY.getDimSize(0) != rowNum)
{
return Matrix();
}
int nx1 = aX1.getDimSize(0);
std::shared_ptr<double> resultData = std::shared_ptr<double>(Aurora::malloc(nx1), Aurora::free);
for (int i = 0; i < nx1; ++i)
{
std::shared_ptr<double> xResultData = std::shared_ptr<double>(Aurora::malloc(columnNum), Aurora::free);
for(int j =0; j < columnNum; ++j)
{
xResultData.get()[j] = interp1(aY,aV($,j).toMatrix(),aY1(i).toMatrix(),aMethod).getData()[0];
}
Matrix xResult(xResultData,std::vector<int>{columnNum});
resultData.get()[i] = interp1(aX,xResult,aX1(i).toMatrix(),aMethod).getData()[0];
}
return Matrix(resultData,std::vector<int>{nx1});
}
Matrix Aurora::interpn(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
{
return Aurora::interp2(aY,aX,aV,aY1,aX1,aMethod);
}
2023-04-23 09:30:47 +08:00
Matrix Aurora::std(const Matrix &aMatrix) {
if (aMatrix.getDimSize(2) > 1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "std() not support 3D data!" : "std() not support complex value type!")
<< std::endl;
return Matrix();
}
2023-04-28 13:22:07 +08:00
Matrix src = aMatrix.isComplex() ? Aurora::abs(aMatrix) : aMatrix.deepCopy();
int calc_size = src.getDimSize(0) == 1 ? src.getDimSize(1) : src.getDimSize(0);
2023-04-27 14:39:15 +08:00
int col = src.getDimSize(0) == 1?1:src.getDimSize(1) ;
auto std = Aurora::malloc(col);
for (int i = 0; i < col; ++i) {
2023-04-28 13:22:07 +08:00
double *p = src.getData() + i * calc_size;
double mean = cblas_dasum(calc_size, p, 1) / calc_size;
vdSubI(calc_size, p, 1, &mean, 0, p, 1);
vdSqr(calc_size, p, p);
std[i] = cblas_dasum(calc_size, p, 1) / (calc_size - 1);
2023-04-23 09:30:47 +08:00
}
2023-04-28 13:22:07 +08:00
vdSqrt(col, std, std);
2023-04-27 14:39:15 +08:00
return Matrix::New(std, 1, col, aMatrix.getDimSize(2));
2023-04-23 09:30:47 +08:00
}
2023-04-23 16:02:08 +08:00
2023-04-24 16:02:15 +08:00
Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction, long& rowIdx, long& colIdx) {
2023-04-23 16:02:08 +08:00
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
<< std::endl;
return Matrix();
}
//针对向量行等于列
if (direction == Column && aMatrix.getDimSize(0)==1){
direction = All;
}
2023-04-23 16:02:08 +08:00
switch (direction)
{
2023-04-24 16:02:15 +08:00
case All: {
Eigen::Map<Eigen::MatrixXd> retV(aMatrix.getData(), aMatrix.getDimSize(0), aMatrix.getDimSize(1));
double *ret = malloc(1);
ret[0] = retV.array().minCoeff(&rowIdx, &colIdx);
return Matrix::New(ret, 1);
2023-04-23 16:02:08 +08:00
}
case Row:
{
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(0));
2023-04-24 16:02:15 +08:00
if (aMatrix.getDimSize(0) == 1){
ret[0] = srcMatrix.topRows(0).minCoeff(&rowIdx, &colIdx);
}
else{
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,aMatrix.getDimSize(0),1);
retMatrix = srcMatrix.rowwise().minCoeff();
}
2023-04-23 16:02:08 +08:00
return Matrix::New(ret,aMatrix.getDimSize(0),1);
}
case Column:
2023-04-24 15:24:23 +08:00
default:
2023-04-23 16:02:08 +08:00
{
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
2023-04-24 16:02:15 +08:00
double * ret = malloc(aMatrix.getDimSize(1));
if (aMatrix.getDimSize(1) == 1){
ret[0] = srcMatrix.col(0).minCoeff(&rowIdx, &colIdx);
}
else {
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,1,aMatrix.getDimSize(1));
retMatrix = srcMatrix.colwise().minCoeff();
}
2023-04-23 16:02:08 +08:00
return Matrix::New(ret,1,aMatrix.getDimSize(1));
}
}
}
2023-04-24 16:02:15 +08:00
Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) {
long a,b;
return min(aMatrix,direction,a,b);
}
2023-04-23 16:02:08 +08:00
Matrix Aurora::min(const Matrix &aMatrix, const Matrix &aOther) {
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
<< std::endl;
return Matrix();
}
if (aOther.getDimSize(2)>1 || aOther.isComplex()) {
std::cerr
<< (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
<< std::endl;
return Matrix();
}
//same shape
if (aMatrix.compareShape(aOther)){
double* output = malloc(aMatrix.getDataSize());
vdFminI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1);
return Matrix::New(output,aMatrix);
}
// one is scalar
else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){
double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0];
auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix;
double* output = malloc(matrix.getDataSize());
vdFminI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1);
return Matrix::New(output,matrix);
}
else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) {
if (aMatrix.getDimSize(1) == 1){
double* output = malloc(aOther.getDataSize());
for (int i = 0; i < aOther.getDimSize(1); ++i) {
vdFminI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1,
output + aOther.getDimSize(0) * i, 1);
}
return Matrix::New(output,aOther);
}
else{
double* output = malloc(aMatrix.getDataSize());
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
vdFminI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0),
output + i, aOther.getDimSize(0));
}
return Matrix::New(output,aMatrix);
}
}
else{
std::cerr
<< "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]"
<< std::endl;
return Matrix();
}
}
Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction) {
2023-04-24 16:02:15 +08:00
long a,b;
return max(aMatrix,direction,a,b);
}
Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction, long& rowIdx, long& colIdx) {
2023-04-23 16:02:08 +08:00
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
2023-04-23 17:32:04 +08:00
<< (aMatrix.getDimSize(2) > 1 ? "max() not support 3D data!" : "max() not support complex value type!")
2023-04-23 16:02:08 +08:00
<< std::endl;
return Matrix();
}
//针对向量行等于列
if (direction == Column && aMatrix.getDimSize(0)==1){
direction = All;
}
2023-04-23 16:02:08 +08:00
switch (direction)
{
case All:
{
2023-04-24 16:02:15 +08:00
Eigen::Map<Eigen::MatrixXd> retV(aMatrix.getData(), aMatrix.getDimSize(0), aMatrix.getDimSize(1));
double *ret = malloc(1);
ret[0] = retV.array().maxCoeff(&rowIdx, &colIdx);
2023-04-23 16:02:08 +08:00
return Matrix::New(ret,1);
}
case Row:
{
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(0));
2023-04-24 16:02:15 +08:00
if (aMatrix.getDimSize(0) == 1){
ret[0] = srcMatrix.topRows(0).maxCoeff(&rowIdx, &colIdx);
}
else{
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,aMatrix.getDimSize(0),1);
retMatrix = srcMatrix.rowwise().maxCoeff();
}
2023-04-23 16:02:08 +08:00
return Matrix::New(ret,aMatrix.getDimSize(0),1);
}
case Column:
2023-04-23 17:32:04 +08:00
default:
2023-04-23 16:02:08 +08:00
{
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(0));
2023-04-24 16:02:15 +08:00
if (aMatrix.getDimSize(1) == 1){
ret[0] = srcMatrix.col(0).maxCoeff(&rowIdx, &colIdx);
}
else {
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,1,aMatrix.getDimSize(1));
retMatrix = srcMatrix.colwise().maxCoeff();
}
2023-04-23 16:02:08 +08:00
return Matrix::New(ret,1,aMatrix.getDimSize(1));
}
}
}
2023-04-23 17:32:04 +08:00
Matrix Aurora::sum(const Matrix &aMatrix, FunctionDirection direction) {
2023-04-25 17:28:33 +08:00
if (aMatrix.getDimSize(2)>1 ) {
std::cerr<< "sum() not support 3D data!"
2023-04-23 17:32:04 +08:00
<< std::endl;
return Matrix();
}
//针对向量行等于列
if (direction == Column && aMatrix.getDimSize(0)==1){
direction = Row;
}
2023-04-25 17:28:33 +08:00
if (aMatrix.isComplex()){
switch (direction)
2023-04-23 17:32:04 +08:00
{
2023-04-25 17:28:33 +08:00
case All:
{
Eigen::Map<Eigen::VectorXcd> srcV((std::complex<double>*)aMatrix.getData(),aMatrix.getDataSize());
std::complex<double>* ret = (std::complex<double>*)malloc(1,true);
ret[0] = srcV.array().sum();
return Matrix::New((double*)ret,1,1,1,Complex);
}
case Row:
{
Eigen::Map<Eigen::MatrixXcd> srcM((std::complex<double>*)aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
std::complex<double> * ret = (std::complex<double>*)malloc(aMatrix.getDimSize(0),true);
Eigen::Map<Eigen::VectorXcd> retV(ret,aMatrix.getDimSize(0));
retV = srcM.rowwise().sum();
return Matrix::New((double*)ret,aMatrix.getDimSize(0),1,1,Complex);
}
case Column:
default:
{
Eigen::Map<Eigen::MatrixXcd> srcM((std::complex<double>*)aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
std::complex<double>* ret = (std::complex<double>*)malloc(aMatrix.getDimSize(1),true);
Eigen::Map<Eigen::VectorXcd> retV(ret,aMatrix.getDimSize(1));
retV = srcM.colwise().sum();
return Matrix::New((double*)ret,1,aMatrix.getDimSize(1),1,Complex);
}
2023-04-23 17:32:04 +08:00
}
2023-04-25 17:28:33 +08:00
}
else{
switch (direction)
2023-04-23 17:32:04 +08:00
{
2023-04-25 17:28:33 +08:00
case All:
{
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
double * ret = malloc(1);
ret[0] = srcV.array().sum();
return Matrix::New(ret,1);
}
case Row:
{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(0));
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
retV = srcM.rowwise().sum();
return Matrix::New(ret,aMatrix.getDimSize(0),1);
}
case Column:
default:
{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(1));
2023-04-25 17:46:25 +08:00
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
2023-04-25 17:28:33 +08:00
retV = srcM.colwise().sum();
return Matrix::New(ret,1,aMatrix.getDimSize(1));
}
2023-04-23 17:32:04 +08:00
}
}
}
2023-04-24 15:24:23 +08:00
Matrix Aurora::mean(const Matrix &aMatrix, FunctionDirection direction, bool aIncludeNan) {
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "sum() not support 3D data!" : "sum() not support complex value type!")
<< std::endl;
return Matrix();
}
//针对向量行等于列
if (direction == Column && aMatrix.getDimSize(0)==1){
direction = All;
}
2023-04-24 15:24:23 +08:00
if (aIncludeNan){
switch (direction)
{
case All:
{
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
2023-04-27 15:57:03 +08:00
double * ret = malloc(64);
2023-04-24 15:24:23 +08:00
ret[0] = srcV.array().mean();
return Matrix::New(ret,1);
}
case Row:
{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(0));
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
retV = srcM.rowwise().mean();
return Matrix::New(ret,aMatrix.getDimSize(0),1);
}
case Column:
default:
{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * ret = malloc(aMatrix.getDimSize(1));
2023-04-27 14:39:15 +08:00
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
2023-04-24 15:24:23 +08:00
retV = srcM.colwise().mean();
return Matrix::New(ret,1,aMatrix.getDimSize(1));
}
}
}
else{
switch (direction)
{
case All:
{
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData(),aMatrix.getDataSize());
double * retVd = malloc(aMatrix.getDataSize());
Eigen::Map<Eigen::VectorXd> retV(retVd,aMatrix.getDataSize());
Eigen::VectorXd ones = Eigen::VectorXd(aMatrix.getDataSize());
ones.setConstant(1.0);
retV = srcV.array().isNaN().select(0.0,ones);
int count = retV.sum();
if (count == 0){
free(retVd);
double *ret = malloc(1);
ret[0]=0;
return Matrix::New(ret,1);
}
else {
double *ret = malloc(1);
retV = srcV.array().isNaN().select(0.0,srcV);
ret[0] = retV.sum() / count;
free(retVd);
return Matrix::New(ret, 1);
}
}
case Row:
{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * retMd = malloc(aMatrix.getDataSize());
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
zeros.setConstant(0.0);
retM = srcM.array().isNaN().select(zeros,1.0);
Eigen::VectorXd countM = retM.rowwise().sum();
countM = (countM.array()==0.0).select(1.0,countM);
retM = srcM.array().isNaN().select(0.0,srcM);
double * ret = malloc(aMatrix.getDimSize(0));
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(0));
retV = retM.rowwise().sum();
retV =retV.array()/countM.array();
free(retMd);
return Matrix::New(ret,aMatrix.getDimSize(0),1);
}
case Column:
default:
{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
double * retMd = malloc(aMatrix.getDataSize());
Eigen::Map<Eigen::MatrixXd> retM(retMd,aMatrix.getDimSize(0),aMatrix.getDimSize(1));
Eigen::MatrixXd zeros = Eigen::MatrixXd(aMatrix.getDimSize(0), aMatrix.getDimSize(1));
zeros.setConstant(0.0);
retM = srcM.array().isNaN().select(zeros,1.0);
Eigen::VectorXd countM = retM.colwise().sum();
countM = (countM.array()==0).select(1.0,countM);
retM = srcM.array().isNaN().select(0.0,srcM);
double * ret = malloc(aMatrix.getDimSize(1));
Eigen::Map<Eigen::VectorXd> retV(ret,aMatrix.getDimSize(1));
retV = retM.colwise().sum();
retV = retV.array()/countM.array();
free(retMd);
return Matrix::New(ret,1,aMatrix.getDimSize(1));
}
}
}
}
Matrix Aurora::sort(const Matrix &aMatrix) {
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "sort() not support 3D data!" : "sort() not support complex value type!")
<< std::endl;
return Matrix();
}
return sort(std::forward<Matrix &&>(aMatrix.deepCopy()));
}
Matrix Aurora::sort(Matrix &&aMatrix) {
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "sort() not support 3D data!" : "sort() not support complex value type!")
<< std::endl;
return Matrix();
}
2023-04-27 14:39:15 +08:00
//针对向量行等于列
if (aMatrix.getDimSize(0)==1){
return sortrows(aMatrix);
}
if (aMatrix.getDimSize(0)>=100000){
#pragma omp parallel for
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData()+i*aMatrix.getDimSize(0),aMatrix.getDimSize(0));
std::sort(srcV.array().begin(),srcV.array().end());
}
}
else
{
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
Eigen::Map<Eigen::VectorXd> srcV(aMatrix.getData()+i*aMatrix.getDimSize(0),aMatrix.getDimSize(0));
std::sort(srcV.array().begin(),srcV.array().end());
}
}
return aMatrix;
}
Matrix Aurora::sortrows(const Matrix &aMatrix) {
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "sortrows() not support 3D data!" : "sortrows() not support complex value type!")
<< std::endl;
return Matrix();
}
return sortrows(std::forward<Matrix &&>(aMatrix.deepCopy()));
}
Matrix Aurora::sortrows(Matrix &&aMatrix) {
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "sortrows() not support 3D data!" : "sortrows() not support complex value type!")
<< std::endl;
return Matrix();
}
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
if (aMatrix.getDimSize(1)>=100000){
#pragma omp parallel for
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
std::sort(srcM.row(i).array().begin(),srcM.row(i).array().end());
}
}
else
{
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
std::sort(srcM.row(i).array().begin(),srcM.row(i).array().end());
}
}
return aMatrix;
}
Matrix Aurora::median(const Matrix &aMatrix) {
if (aMatrix.getDimSize(2) > 1 || aMatrix.isComplex()) {
std::cerr
<< (aMatrix.getDimSize(2) > 1 ? "median() not support 3D data!"
: "median() not support complex value type!")
<< std::endl;
return Matrix();
}
bool horVector = aMatrix.getDimSize(0)==1;
Matrix sorted = horVector?sortrows(aMatrix):sort(aMatrix);
int rows = horVector?sorted.getDimSize(1):sorted.getDimSize(0);
int cols = horVector?sorted.getDimSize(0):sorted.getDimSize(1);
Eigen::Map<Eigen::MatrixXd> srcM(sorted.getData(),rows,cols);
2023-04-27 14:39:15 +08:00
bool flag = rows % 2 == 1;
double* ret = malloc(cols);
Eigen::Map<Eigen::VectorXd> retV(ret,cols);
if (flag) {
retV = srcM.row(rows/2);
return Matrix::New(ret,1,cols);
} else {
retV = (srcM.row(rows/2-1).array()+srcM.row(rows/2).array())/2;
return Matrix::New(ret,1,cols);
}
}
Matrix Aurora::fft(const Matrix &aMatrix) {
double *output = nullptr;
2023-05-06 14:13:16 +08:00
mkl_free_buffers();
output = malloc(aMatrix.getDataSize(), true);
if (!aMatrix.isComplex()) {
cblas_dcopy(aMatrix.getDataSize(), aMatrix.getData(), 1, output, 2);
double zero = 0.0;
cblas_dcopy(aMatrix.getDataSize(), &zero, 0, output+1, 2);
} else {
cblas_zcopy(aMatrix.getDataSize(), aMatrix.getData(), 1, output, 1);
}
DFTI_DESCRIPTOR_HANDLE my_desc_handle = NULL;
MKL_LONG status;
//创建 Descriptor, 精度 double , 输入类型实数, 维度1
status = DftiCreateDescriptor(&my_desc_handle, DFTI_DOUBLE, DFTI_COMPLEX, 1, aMatrix.getDimSize(0));
if (status != DFTI_NO_ERROR) goto error;
//通过 setValue 配置Descriptor
//使用单独的输出数据缓存
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_INPLACE);
if (status != DFTI_NO_ERROR) goto error;
//每个傅里叶变换的输入距离
status = DftiSetValue(my_desc_handle,DFTI_INPUT_DISTANCE,aMatrix.getDimSize(0));
if (status != DFTI_NO_ERROR) goto error;
//每个傅里叶变换的输出距离
status = DftiSetValue(my_desc_handle,DFTI_OUTPUT_DISTANCE,aMatrix.getDimSize(0));
if (status != DFTI_NO_ERROR) goto error;
//傅里叶变换的数量
status = DftiSetValue(my_desc_handle,DFTI_NUMBER_OF_TRANSFORMS,aMatrix.getDimSize(1));
if (status != DFTI_NO_ERROR) goto error;
//提交 修改配置后的Descriptor(实际上会进行FFT的计算初始化)
status = DftiCommitDescriptor(my_desc_handle);
if (status != DFTI_NO_ERROR) goto error;
//执行计算
status = DftiComputeForward(my_desc_handle, output, output);
if (status != DFTI_NO_ERROR) goto error;
//释放资源
status = DftiFreeDescriptor(&my_desc_handle);
if (status != DFTI_NO_ERROR) goto error;
2023-05-06 14:13:16 +08:00
mkl_free_buffers();
return Matrix::New(output, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Complex);
error:
std::cerr<<"FFT fail, error message:"<<DftiErrorMessage(status)<<std::endl;
return Matrix();
}
Matrix Aurora::ifft(const Matrix &aMatrix) {
if (!aMatrix.isComplex()){
std::cerr<<"ifft input must be complex value"<<std::endl;
return Matrix();
}
DFTI_DESCRIPTOR_HANDLE my_desc_handle = NULL;
2023-05-06 14:13:16 +08:00
mkl_free_buffers();
auto output = malloc(aMatrix.getDataSize(),true);
MKL_LONG status;
//创建 Descriptor, 精度 double , 输入类型实数, 维度1
2023-04-28 13:22:07 +08:00
int size = aMatrix.getDimSize(0);
status = DftiCreateDescriptor(&my_desc_handle, DFTI_DOUBLE, DFTI_COMPLEX, 1, size);
if (status != DFTI_NO_ERROR) goto error;
//通过 setValue 配置Descriptor
//使用单独的输出数据缓存
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
if (status != DFTI_NO_ERROR) goto error;
//设置DFTI_BACKWARD_SCALE !!!很关键,不然值不对
2023-04-28 13:22:07 +08:00
status = DftiSetValue(my_desc_handle, DFTI_BACKWARD_SCALE, 1.0f / size);
if (status != DFTI_NO_ERROR) goto error;
2023-04-28 13:22:07 +08:00
status = DftiSetValue(my_desc_handle,DFTI_INPUT_DISTANCE,size);
if (status != DFTI_NO_ERROR) goto error;
//每个傅里叶变换的输出距离
2023-04-28 13:22:07 +08:00
status = DftiSetValue(my_desc_handle,DFTI_OUTPUT_DISTANCE,size);
if (status != DFTI_NO_ERROR) goto error;
//傅里叶变换的数量
status = DftiSetValue(my_desc_handle,DFTI_NUMBER_OF_TRANSFORMS,aMatrix.getDimSize(1));
if (status != DFTI_NO_ERROR) goto error;
status = DftiCommitDescriptor(my_desc_handle);
if (status != DFTI_NO_ERROR) goto error;
//提交 修改配置后的Descriptor(实际上会进行FFT的计算初始化)
status = DftiCommitDescriptor(my_desc_handle);
if (status != DFTI_NO_ERROR) goto error;
2023-05-05 13:22:15 +08:00
//执行计算
status = DftiComputeBackward(my_desc_handle, aMatrix.getData(), output);
if (status != DFTI_NO_ERROR) goto error;
//释放资源
status = DftiFreeDescriptor(&my_desc_handle);
2023-05-06 14:13:16 +08:00
mkl_free_buffers();
if (status != DFTI_NO_ERROR) goto error;
{
return Matrix::New(output, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Complex);
}
error:
std::cerr<<"FFT fail, error message:"<<DftiErrorMessage(status)<<std::endl;
return Matrix();
}
2023-05-05 13:22:15 +08:00
Matrix Aurora::ifft_symmetric(const Matrix &aMatrix,long length)
{
if(!aMatrix.isVector()){
std::cerr<<"ifft_symmetric only support vector!"<<std::endl;
return Matrix();
}
int matrixLength = aMatrix.getDataSize();
int resultHalfLength = (int)std::ceil(((double)length*0.5));
int copyLength = resultHalfLength<matrixLength?resultHalfLength:matrixLength;
double* calcData = malloc(length,true);
double zero = 0.0;
//所有数据统一置0
cblas_dcopy(length*2,&zero,0,calcData,1);
//copy前半段数据
cblas_zcopy(copyLength,aMatrix.getData(),1,calcData,1);
//copy后半段数据,跳过index 0的值,并设置虚部共轭
vdAddI(copyLength-1,&zero,0,(aMatrix.getData()+2),2,(calcData+(length-1)*2),-2);
vdSubI(copyLength-1,&zero,0,(aMatrix.getData()+2+1),2,(calcData+(length-1)*2+1),-2);
return real(ifft(Matrix::New(calcData,length,1,1,Complex)));
}
Matrix Aurora::hilbert(const Matrix &aMatrix) {
auto x = fft(aMatrix);
2023-04-25 17:28:33 +08:00
auto h = malloc(aMatrix.getDimSize(0));
auto two = 2.0;
auto zero = 0.0;
cblas_dcopy(aMatrix.getDimSize(0), &zero, 0, h, 1);
cblas_dcopy(aMatrix.getDimSize(0) / 2, &two, 0, h, 1);
h[aMatrix.getDimSize(0) / 2] = ((aMatrix.getDimSize(0) << 31) >> 31) ? 2.0 : 1.0;
h[0] = 1.0;
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
auto p = (double *)(x.getData() + aMatrix.getDimSize(0)* i*2);
vdMulI(aMatrix.getDimSize(0), p, 2, h, 1, p, 2);
vdMulI(aMatrix.getDimSize(0), p + 1, 2, h, 1, p + 1, 2);
}
auto result = ifft( x);
free(h);
return result;
}
2023-04-25 17:28:33 +08:00
Matrix Aurora::prod(const Matrix &aMatrix) {
if (aMatrix.getDimSize(2) > 1 ) {
std::cerr<< "prod() not support 3D data!"<< std::endl;
2023-04-25 17:28:33 +08:00
return Matrix();
}
int row = aMatrix.getDimSize(0)==1?aMatrix.getDimSize(1):aMatrix.getDimSize(0);
int col = aMatrix.getDimSize(0)==1?1:aMatrix.getDimSize(1);
2023-04-25 17:28:33 +08:00
if (aMatrix.isComplex()){
Eigen::Map<Eigen::MatrixXcd> srcM((std::complex<double>*)aMatrix.getData(),row,col);
auto ret = malloc(col,true);
Eigen::Map<Eigen::VectorXcd> retV((std::complex<double>*)ret,col);
2023-04-25 17:28:33 +08:00
retV = srcM.colwise().prod();
return Matrix::New(ret,1,col,1,Complex);
2023-04-25 17:28:33 +08:00
}
else{
Eigen::Map<Eigen::MatrixXd> srcM(aMatrix.getData(),row,col);
auto ret = malloc(col);
Eigen::Map<Eigen::VectorXd> retV(ret,col);
2023-04-25 17:28:33 +08:00
retV = srcM.colwise().prod();
return Matrix::New(ret,1,col);
2023-04-25 17:28:33 +08:00
}
}
Matrix Aurora::dot(const Matrix &aMatrix,const Matrix& aOther,FunctionDirection direction ) {
if ( direction == All){
std::cerr<< "dot() not support 3D data!"<< std::endl;
2023-04-25 17:28:33 +08:00
return Matrix();
}
if (!aMatrix.compareShape(aOther)){
std::cerr<< "dot() matrix must be same shape!"<< std::endl;
2023-04-25 17:28:33 +08:00
return Matrix();
}
//针对向量行等于列
if (direction == Column && aMatrix.getDimSize(0)==1){
direction = Row;
}
2023-04-25 17:28:33 +08:00
if (aMatrix.isComplex()){
return sum(conj(aMatrix)*aOther,direction);
}
else{
if (direction == Column)
{
auto ret = malloc(aMatrix.getDimSize(1));
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
ret[i]=cblas_ddot(aMatrix.getDimSize(0),aMatrix.getData()+i*aMatrix.getDimSize(0),1,
aOther.getData()+i*aMatrix.getDimSize(0),1);
}
return Matrix::New(ret,1,aMatrix.getDimSize(1),1);
}
else{
auto ret = malloc(aMatrix.getDimSize(0));
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
ret[i] = cblas_ddot(aMatrix.getDimSize(1),aMatrix.getData()+i,aMatrix.getDimSize(0),
aOther.getData()+i,aMatrix.getDimSize(0));
}
return Matrix::New(ret,aMatrix.getDimSize(1),1,1);
}
}
}