Files
Aurora/test/FunctionTester.cpp

288 lines
9.8 KiB
C++
Raw Normal View History

2023-04-18 13:31:14 +08:00
#include <gtest/gtest.h>
#include "Matrix.h"
#include "Function.h"
2023-04-19 15:54:52 +08:00
#include "Function1D.h"
2023-04-18 13:31:14 +08:00
#define DISPLAY_MATRIX(Matrix)\
printf("=====================================\r\n");\
printf("%s:\r\n", #Matrix);\
Matrix.printf();\
printf("%s end================================\r\n", #Matrix);
2023-04-18 13:31:14 +08:00
class FunctionTester:public ::testing::Test{
protected:
static void SetUpFunctionTester(){
}
static void TearDownTestCase(){
}
void SetUp(){
}
void TearDown(){
}
};
double fourDecimalRound(double src){
return round(src*10000.0)/10000.0;
}
TEST_F(FunctionTester, MatrixCreate) {
printf("1");
double * dataA =Aurora::malloc(9);
double * dataB = new double[9];
double * dataC = new double[9];
double * dataD = new double[9];
//mkl matrix
{
printf("2");
Aurora::Matrix A = Aurora::Matrix::New(dataA, 3, 3);
EXPECT_EQ(dataA, A.getData());
EXPECT_EQ(9, A.getDataSize());
EXPECT_EQ(2, A.getDims());
EXPECT_EQ(3, A.getDimSize(0));
EXPECT_EQ(3, A.getDimSize(1));
EXPECT_EQ(Aurora::Normal, A.getValueType());
DISPLAY_MATRIX(A)
}
// double [] matrix
{
Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB, 3, 3);
EXPECT_EQ(dataB, B.getData());
EXPECT_EQ(9, B.getDataSize());
EXPECT_EQ(2, B.getDims());
EXPECT_EQ(3, B.getDimSize(0));
EXPECT_EQ(3, B.getDimSize(1));
EXPECT_EQ(Aurora::Normal, B.getValueType());
DISPLAY_MATRIX(B)
}
// copy from double [] to mkl matrix
{
Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataC, 3, 3);
EXPECT_NE(dataC, C.getData());
EXPECT_EQ(9, C.getDataSize());
EXPECT_EQ(2, C.getDims());
EXPECT_EQ(3, C.getDimSize(0));
EXPECT_EQ(3, C.getDimSize(1));
EXPECT_EQ(Aurora::Normal, C.getValueType());
DISPLAY_MATRIX(C)
}
// 2vector
{
Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataC, 9);
EXPECT_NE(dataC, C.getData());
EXPECT_EQ(9, C.getDataSize());
EXPECT_EQ(2, C.getDims());
EXPECT_EQ(9, C.getDimSize(0));
EXPECT_EQ(1, C.getDimSize(1));
EXPECT_EQ(Aurora::Normal, C.getValueType());
DISPLAY_MATRIX(C)
}
// 2d vector
{
Aurora::Matrix C = Aurora::Matrix::fromRawData(dataC, 9, 1);
EXPECT_EQ(dataC, C.getData());
EXPECT_EQ(9, C.getDataSize());
EXPECT_EQ(2, C.getDims());
EXPECT_EQ(9, C.getDimSize(0));
EXPECT_EQ(1, C.getDimSize(1));
EXPECT_EQ(Aurora::Normal, C.getValueType());
DISPLAY_MATRIX(C)
}
// 2d vector column major
{
Aurora::Matrix C = Aurora::Matrix::copyFromRawData(dataD, 1, 9);
EXPECT_NE(dataD, C.getData());
delete [] dataD;
EXPECT_EQ(9, C.getDataSize());
EXPECT_EQ(2, C.getDims());
EXPECT_EQ(1, C.getDimSize(0));
EXPECT_EQ(9, C.getDimSize(1));
EXPECT_EQ(Aurora::Normal, C.getValueType());
DISPLAY_MATRIX(C)
}
// 3d matrix
{
double * tempData = new double[9];
Aurora::Matrix C = Aurora::Matrix::fromRawData(tempData, 3, 3,1);
EXPECT_EQ(dataD, C.getData());
EXPECT_EQ(9, C.getDataSize());
EXPECT_EQ(2, C.getDims());
EXPECT_EQ(3, C.getDimSize(0));
EXPECT_EQ(3, C.getDimSize(1));
EXPECT_EQ(1, C.getDimSize(2));
EXPECT_EQ(Aurora::Normal, C.getValueType());
DISPLAY_MATRIX(C)
}
// 3d matrix 2
{
double * tempData = new double[9];
Aurora::Matrix C = Aurora::Matrix::fromRawData(tempData, 3, 1,3);
EXPECT_EQ(dataD, C.getData());
EXPECT_EQ(9, C.getDataSize());
EXPECT_EQ(3, C.getDims());
EXPECT_EQ(3, C.getDimSize(0));
EXPECT_EQ(1, C.getDimSize(1));
EXPECT_EQ(3, C.getDimSize(2));
EXPECT_EQ(Aurora::Normal, C.getValueType());
DISPLAY_MATRIX(C)
}
}
2023-04-19 15:54:52 +08:00
TEST_F(FunctionTester, matrixSlice) {
2023-04-20 11:53:34 +08:00
double * dataA =Aurora::malloc(8);
double * dataB =Aurora::malloc(8);
2023-04-21 15:23:35 +08:00
double * dataC =Aurora::malloc(8);
2023-04-19 15:54:52 +08:00
for (int i = 0; i < 8; ++i) {
2023-04-21 15:23:35 +08:00
dataA[i]=(double)(i);
dataB[i]=(double)(1);
dataC[i]=(double)(9-i);
2023-04-19 15:54:52 +08:00
}
Aurora::Matrix A = Aurora::Matrix::New(dataA,2,2,2);
printf("A:\r\n");
A.printf();
Aurora::Matrix B = Aurora::Matrix::New(dataB,2,2,2);
printf("B:\r\n");
B.printf();
2023-04-21 15:23:35 +08:00
Aurora::Matrix C = Aurora::Matrix::New(dataC,2,2,2);
printf("C:\r\n");
C.printf();
//2D slice
EXPECT_EQ(4.0,dataA[4]);
A(Aurora::$,Aurora::$,1) = B(0,Aurora::$,Aurora::$);
EXPECT_EQ(1,dataA[4]);
EXPECT_EQ(3,dataA[3]);
A(Aurora::$,1,Aurora::$) = B(Aurora::$,Aurora::$,0);
EXPECT_EQ(1.0,dataA[3]);
EXPECT_EQ(0.0,dataA[0]);
A(0,Aurora::$,Aurora::$) = B(Aurora::$,0,Aurora::$);
EXPECT_EQ(1.0,dataA[0]);
//vector slice
A(0,Aurora::$,0) = C(0,0,Aurora::$);
EXPECT_EQ(9.0,dataA[0]);
A(Aurora::$,0,0) = C(0,Aurora::$,1);
EXPECT_EQ(5.0,dataA[0]);
//error slice
EXPECT_EQ(1,A(Aurora::$,Aurora::$,Aurora::$).toMatrix().getDataSize() );
auto D =C(0,0,0).toMatrix();
EXPECT_EQ(1,D.getDataSize() );
EXPECT_EQ(9,D.getData()[0] );
2023-04-19 15:54:52 +08:00
}
2023-04-21 15:23:35 +08:00
TEST_F(FunctionTester, matrixOpertaor) {
//3D
{
double * dataA =new double[8];
double * dataB =new double[8];
for (int i = 0; i < 8; ++i) {
dataA[i]=(double)(i);
dataB[i]=(double)(2);
}
Aurora::Matrix A = Aurora::Matrix::fromRawData(dataA,2,2,2);
DISPLAY_MATRIX(A)
Aurora::Matrix B = Aurora::Matrix::fromRawData(dataB,2,2,2);
DISPLAY_MATRIX(B)
auto C = (A*B)-B;
DISPLAY_MATRIX(C)
EXPECT_EQ(C.getData()[2],2);
C = A*B/2.0;
EXPECT_EQ(C.getData()[2],2);
C = A*B*B/2.0;
EXPECT_EQ(C.getData()[2],4);
}
2023-04-21 15:23:35 +08:00
}
2023-04-19 15:54:52 +08:00
TEST_F(FunctionTester, sign) {
2023-04-20 11:53:34 +08:00
double * dataA =Aurora::malloc(9);
double * dataB =Aurora::malloc(9);
2023-04-19 15:54:52 +08:00
for (int i = 0; i < 9; ++i) {
dataA[i]=(double)(i-3);
dataB[i]=(double)(i+2);
}
Aurora::Matrix A = Aurora::Matrix::New(dataA,3,3);
printf("A:\r\n");
A.printf();
Aurora::Matrix B = Aurora::Matrix::New(dataB,3,3);
printf("B:\r\n");
B.printf();
printf("sign(A):\r\n");
sign(A*B).printf();
}
2023-04-18 13:31:14 +08:00
TEST_F(FunctionTester, immse){
double dataA[9]={1,2,3,4,5,6,7,8,9};
double dataB[9]={10,20,30,40,50,40,30,20,10};
EXPECT_DOUBLE_EQ(fourDecimalRound(Aurora::immse(dataA,dataB,9)),698.3333)<<" immse error;";
}
TEST_F(FunctionTester, polyval){
double dataP[3]={3,2,1};
double dataX[3]={5,7,9};
double*resultP = Aurora::polyval(dataX,dataP,3);
EXPECT_DOUBLE_EQ(86., resultP[0])<<" polyval error;";
EXPECT_DOUBLE_EQ(162., resultP[1])<<" polyval error;";
EXPECT_DOUBLE_EQ(262., resultP[2])<<" polyval error;";
delete [] resultP;
}
TEST_F(FunctionTester, std){
double dataMA[9]={1, 2, 3, 2, 2, 6, 3, 3, 6};
double* resultStd = Aurora::std(3, 3, dataMA);
EXPECT_DOUBLE_EQ(1.0, resultStd[0])<<" std error index 0";
EXPECT_DOUBLE_EQ(2.3094, fourDecimalRound(resultStd[1]))<<" std error index 1";
EXPECT_DOUBLE_EQ(1.7321, fourDecimalRound(resultStd[2]))<<" std error index 2";
delete [] resultStd;
}
TEST_F(FunctionTester, fftAndComplexAndIfft){
double input[10]{1,1,0,2,2,0,1,1,0,2};
std::complex<double>* complexInput = Aurora::complex(10,input);
//复数化后实部不变虚部全为0
EXPECT_DOUBLE_EQ(complexInput[1].real(),1.0)<<" complex error";
EXPECT_DOUBLE_EQ(complexInput[1].imag(),0)<<" complex error";
std::complex<double>* result = Aurora::fft(10,complexInput);
delete [] complexInput;
//检验fft结果与matlab是否对应
EXPECT_DOUBLE_EQ(0.0729, fourDecimalRound(result[1].real()))<<" fft result value error";
EXPECT_DOUBLE_EQ(2.4899, fourDecimalRound(result[2].imag()))<<" fft result value error";
//检验fft的结果是否共轭
EXPECT_DOUBLE_EQ(0, result[4].imag()+result[6].imag())<<" fft result conjugate error";
EXPECT_DOUBLE_EQ(0, result[4].real()-result[6].real())<<" fft result conjugate error";
std::complex<double>* ifftResult = Aurora::ifft(10,result);
EXPECT_DOUBLE_EQ(fourDecimalRound(ifftResult[1].real()),1.0)<<" ifft result real value error";
EXPECT_DOUBLE_EQ(fourDecimalRound(ifftResult[1].imag()),0)<<" ifft result imag value error";
delete [] result;
delete [] ifftResult;
}
TEST_F(FunctionTester, inv){
//默认是column major排布数据
double dataMA[9]={2, 0, 2, 2, 3, 0, 3, 3, 3};
double* result = Aurora::inv(3,dataMA);
EXPECT_DOUBLE_EQ(0.75, fourDecimalRound(result[0]))<<" inv value error";
EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[1]))<<" inv value error";
EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[2]))<<" inv value error";
EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[3]))<<" inv value error";
EXPECT_DOUBLE_EQ(.0, fourDecimalRound(result[4]))<<" inv value error";
EXPECT_DOUBLE_EQ(0.3333, fourDecimalRound(result[5]))<<" inv value error";
EXPECT_DOUBLE_EQ(-0.25, fourDecimalRound(result[6]))<<" inv value error";
EXPECT_DOUBLE_EQ(-0.5, fourDecimalRound(result[7]))<<" inv value error";
EXPECT_DOUBLE_EQ(0.5, fourDecimalRound(result[8]))<<" inv value error";
delete [] result;
}
TEST_F(FunctionTester, hilbert) {
double input[10]{1,1,0,2,2,0,1,1,0,2};
auto result = Aurora::hilbert(10,input);
EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].real()),1.0)<<" hilbert result real value error";
EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].imag()),0.3249)<<" hilbert result imag value error";
delete [] result;
result = Aurora::hilbert(9,input);
EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].real()),1.0)<<" hilbert result real value error";
EXPECT_DOUBLE_EQ(fourDecimalRound(result[1].imag()),0.4253)<<" hilbert result imag value error";
}