Files
Aurora/src/Function1D.cu

439 lines
17 KiB
Plaintext
Raw Normal View History

#include "CudaMatrix.h"
#include "Function1D.cuh"
#include "Matrix.h"
#include <cmath>
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <thrust/iterator/constant_iterator.h>
#include <cuda_runtime.h>
using namespace Aurora;
namespace
{
const int THREADS_PER_BLOCK = 256;
}
__global__ void complexKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[2*idx] = aInputData[idx];
aOutput[2*idx + 1] = 0;
}
}
CudaMatrix Aurora::complex(const CudaMatrix& aMatrix)
{
if(aMatrix.isComplex())
{
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * aMatrix.getDataSize() * Aurora::Complex);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
complexKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Aurora::Complex);
}
__global__ void realKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = aInputData[idx*2];
}
}
CudaMatrix Aurora::real(const CudaMatrix& aMatrix)
{
if(!aMatrix.isComplex())
{
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * aMatrix.getDataSize());
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
realKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Aurora::Normal);
}
__global__ void imageKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = aInputData[idx*2 + 1];
}
}
CudaMatrix Aurora::imag(const CudaMatrix& aMatrix)
{
if(!aMatrix.isComplex())
{
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * aMatrix.getDataSize());
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
imageKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), Aurora::Normal);
}
__global__ void ceilKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::ceil(aInputData[idx]);
}
}
CudaMatrix Aurora::ceil(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
ceilKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::ceil(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
ceilKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void roundKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::round(aInputData[idx]);
}
}
CudaMatrix Aurora::round(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
roundKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::round(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
roundKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void floorKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::floor(aInputData[idx]);
}
}
CudaMatrix Aurora::floor(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
floorKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::floor(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
floorKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void sqrtKernel(float* aInputData, float* aOutput, unsigned int aSize)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
aOutput[idx] = std::sqrt(aInputData[idx]);
}
}
CudaMatrix Aurora::sqrt(const CudaMatrix& aMatrix)
{
if(aMatrix.getValueType() == Aurora::Complex)
{
std::cerr<<"sqrt not support complex"<<std::endl;
return CudaMatrix();
}
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
sqrtKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::sqrt(const CudaMatrix&& aMatrix)
{
if(aMatrix.getValueType() == Aurora::Complex)
{
std::cerr<<"sqrt not support complex"<<std::endl;
return CudaMatrix();
}
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
sqrtKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void absKernel(float* aInputData, float* aOutput, unsigned int aSize, bool aIsComplex)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
if(aIsComplex)
{
aOutput[idx] = sqrt(aInputData[2*idx] * aInputData[2*idx] + aInputData[2*idx+1] * aInputData[2*idx+1]);
}
else
{
aOutput[idx] = abs(aInputData[idx]);
}
}
}
CudaMatrix Aurora::abs(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
absKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size, aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2));
}
CudaMatrix Aurora::abs(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
absKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size, aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2));
}
__global__ void signKernel(float* aInputData, float* aOutput, unsigned int aSize, bool aIsComplex)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aSize)
{
if(aIsComplex)
{
float absValue = sqrt(aInputData[2*idx] * aInputData[2*idx] + aInputData[2*idx + 1] * aInputData[2*idx + 1]);
aOutput[2*idx] = aInputData[2*idx] / absValue;
aOutput[2*idx + 1] = aInputData[2*idx + 1] / absValue;
return;
}
if(aInputData[idx] < 0)
{
aOutput[idx] = -1;
}
else if(aInputData[idx] > 0)
{
aOutput[idx] = 1;
}
else
{
aOutput[idx] = 0;
}
}
}
CudaMatrix Aurora::sign(const CudaMatrix& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
signKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::sign(const CudaMatrix&& aMatrix)
{
size_t size = aMatrix.getDataSize() * aMatrix.getValueType();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
signKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}
__global__ void repMatKernel(float* aInputData, float* aOutput, unsigned int aInputSize, bool aIsComplex)
{
unsigned int idX = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int idY = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int idZ = blockIdx.z * blockDim.z + threadIdx.z;
if(aIsComplex)
{
unsigned int outPutIndex = 2 * (idZ * blockDim.x * blockDim.y * gridDim.x * gridDim.y + idY * blockDim.x * gridDim.x + idX);
unsigned int inPutIndex = 2 * (threadIdx.y * blockDim.x + threadIdx.x);
aOutput[outPutIndex] = aInputData[inPutIndex];
aOutput[outPutIndex + 1] = aInputData[inPutIndex + 1];
}
else
{
aOutput[idZ * blockDim.x * blockDim.y * gridDim.x * gridDim.y + idY * blockDim.x * gridDim.x + idX] = aInputData[threadIdx.y * blockDim.x + threadIdx.x];
}
}
CudaMatrix Aurora::repmat(const CudaMatrix& aMatrix,int aRowTimes, int aColumnTimes)
{
if(aRowTimes < 1 || aColumnTimes < 1 || aMatrix.getDims() > 2 || aMatrix.isNull())
{
return CudaMatrix();
}
dim3 blockSize(aMatrix.getDimSize(0), aMatrix.getDimSize(1), 1);
dim3 gridSize(aRowTimes, aColumnTimes, 1);
size_t size = aMatrix.getDataSize() * aMatrix.getValueType() * aRowTimes * aColumnTimes;
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
repMatKernel<<<gridSize, blockSize>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0) * aRowTimes, aMatrix.getDimSize(1) * aColumnTimes, aMatrix.getDimSize(2), aMatrix.getValueType());
}
CudaMatrix Aurora::repmat(const CudaMatrix& aMatrix,int aRowTimes, int aColumnTimes, int aSliceTimes)
{
if(aRowTimes < 1 || aColumnTimes < 1 || aMatrix.getDims() > 2 || aMatrix.isNull())
{
return CudaMatrix();
}
dim3 blockSize(aMatrix.getDimSize(0), aMatrix.getDimSize(1), 1);
dim3 gridSize(aRowTimes, aColumnTimes, aSliceTimes);
size_t size = aMatrix.getDataSize() * aMatrix.getValueType() * aRowTimes * aColumnTimes * aSliceTimes;
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
repMatKernel<<<gridSize, blockSize>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0) * aRowTimes, aMatrix.getDimSize(1) * aColumnTimes, aMatrix.getDimSize(2) * aSliceTimes, aMatrix.getValueType());
}
__global__ void repMat3DKernel(float* aInputData, float* aOutput, unsigned int aInputSize, bool aIsComplex)
{
unsigned int idX = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int idY = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int idZ = blockIdx.z * blockDim.z + threadIdx.z;
if(aIsComplex)
{
unsigned int outPutIndex = 2 * (idZ * blockDim.x * blockDim.y * gridDim.x * gridDim.y + idY * blockDim.x * gridDim.x + idX);
unsigned int inPutIndex = 2 * (threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x);
aOutput[outPutIndex] = aInputData[inPutIndex];
aOutput[outPutIndex + 1] = aInputData[inPutIndex + 1];
}
else
{
aOutput[idZ * blockDim.x * blockDim.y * gridDim.x * gridDim.y + idY * blockDim.x * gridDim.x + idX] = aInputData[threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x];
}
}
CudaMatrix Aurora::repmat3d(const CudaMatrix& aMatrix,int aRowTimes, int aColumnTimes, int aSliceTimes)
{
if(aRowTimes < 1 || aColumnTimes < 1 || aMatrix.getDims() < 3 || aMatrix.isNull())
{
return CudaMatrix();
}
dim3 blockSize(aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2));
dim3 gridSize(aRowTimes, aColumnTimes, aSliceTimes);
size_t size = aMatrix.getDataSize() * aMatrix.getValueType() * aRowTimes * aColumnTimes * aSliceTimes;
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
repMat3DKernel<<<gridSize, blockSize>>>(aMatrix.getData(), data, aMatrix.getDataSize(), aMatrix.isComplex());
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0) * aRowTimes, aMatrix.getDimSize(1) * aColumnTimes, aMatrix.getDimSize(2) * aSliceTimes, aMatrix.getValueType());
}
__global__ void logKernel(float* aInputData, float* aOutput, unsigned int aInputSize, int aBaseNum)
{
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < aInputSize)
{
if(aBaseNum == -1)
{
aOutput[idx] = logf(aInputData[idx]);
}
else
{
float value = logf(aBaseNum);
aOutput[idx] = logf(aInputData[idx]) / value;
}
}
}
CudaMatrix Aurora::log(const CudaMatrix& aMatrix, int aBaseNum)
{
if(aMatrix.getValueType() == Aurora::Complex)
{
std::cerr<<"log not support complex"<<std::endl;
return CudaMatrix();
}
size_t size = aMatrix.getDataSize();
float* data = nullptr;
cudaMalloc((void**)&data, sizeof(float) * size);
int blocksPerGrid = (size + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
logKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(aMatrix.getData(), data, size, aBaseNum);
cudaDeviceSynchronize();
return Aurora::CudaMatrix::fromRawData(data, aMatrix.getDimSize(0), aMatrix.getDimSize(1), aMatrix.getDimSize(2), aMatrix.getValueType());
}