2023-04-20 17:35:03 +08:00
|
|
|
#include <iostream>
|
|
|
|
|
#include "Function.h"
|
2023-04-19 11:31:01 +08:00
|
|
|
#include "Function2D.h"
|
2023-04-23 09:30:47 +08:00
|
|
|
#include "Function1D.h"
|
2023-04-23 16:01:53 +08:00
|
|
|
//必须在Eigen之前
|
|
|
|
|
#include "AuroraDefs.h"
|
|
|
|
|
|
|
|
|
|
#include <Eigen/Core>
|
|
|
|
|
#include <Eigen/Eigen>
|
|
|
|
|
#include <Eigen/Dense>
|
2023-04-20 17:35:03 +08:00
|
|
|
|
2023-04-21 14:42:24 +08:00
|
|
|
using namespace Aurora;
|
|
|
|
|
|
2023-04-20 17:35:03 +08:00
|
|
|
double Aurora::immse(const Aurora::Matrix &aImageA, const Aurora::Matrix &aImageB) {
|
|
|
|
|
if (aImageA.getDims()!=2|| aImageB.getDims()!=2){
|
|
|
|
|
std::cerr<<"Fail!immse args must all 2d matrix!";
|
|
|
|
|
return 0.0;
|
|
|
|
|
}
|
|
|
|
|
if (!aImageB.compareShape(aImageA)){
|
|
|
|
|
std::cerr<<"Fail!immse args must be same shape!";
|
|
|
|
|
return 0.0;
|
|
|
|
|
}
|
|
|
|
|
if (aImageA.getValueType()!=Normal || aImageB.getValueType() != Normal) {
|
|
|
|
|
std::cerr << "Fail!immse args must be normal value type!";
|
|
|
|
|
return 0.0;
|
|
|
|
|
}
|
|
|
|
|
int size = aImageA.getDataSize();
|
|
|
|
|
auto temp = malloc(size);
|
|
|
|
|
vdSub(size, aImageA.getData(), aImageB.getData(), temp);
|
|
|
|
|
vdSqr(size, temp, temp);
|
|
|
|
|
double result = cblas_dasum(size, temp, 1) / (double) size;
|
|
|
|
|
free(temp);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Aurora::Matrix Aurora::inv(const Aurora::Matrix &aMatrix) {
|
|
|
|
|
if (aMatrix.getDims() != 2) {
|
|
|
|
|
std::cerr << "Fail!inv args must be 2d matrix!";
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
|
|
|
|
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
|
|
|
|
|
std::cerr << "Fail!inv args must be square matrix!";
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
|
|
|
|
if (aMatrix.getValueType() != Normal) {
|
|
|
|
|
std::cerr << "Fail!inv args must be normal value type!";
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
|
|
|
|
int size = aMatrix.getDataSize();
|
|
|
|
|
int *ipiv = new int[aMatrix.getDimSize(0)];
|
|
|
|
|
auto result = malloc(size);
|
2023-04-21 17:04:09 +08:00
|
|
|
cblas_dcopy(size,aMatrix.getData(), 1,result, 1);
|
2023-04-20 17:35:03 +08:00
|
|
|
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
|
|
|
|
|
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), result, aMatrix.getDimSize(0), ipiv);
|
|
|
|
|
delete[] ipiv;
|
|
|
|
|
return Matrix::New(result,aMatrix);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Aurora::Matrix Aurora::inv(Aurora::Matrix&& aMatrix) {
|
|
|
|
|
if (aMatrix.getDims() != 2) {
|
|
|
|
|
std::cerr << "Fail!inv args must be 2d matrix!";
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
|
|
|
|
if (aMatrix.getDimSize(0) != aMatrix.getDimSize(1)) {
|
|
|
|
|
std::cerr << "Fail!inv args must be square matrix!";
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
|
|
|
|
if (aMatrix.getValueType() != Normal) {
|
|
|
|
|
std::cerr << "Fail!inv args must be normal value type!";
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
|
|
|
|
int *ipiv = new int[aMatrix.getDimSize(0)];
|
|
|
|
|
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
|
|
|
|
|
LAPACKE_dgetri(LAPACK_ROW_MAJOR, aMatrix.getDimSize(0), aMatrix.getData(), aMatrix.getDimSize(0), ipiv);
|
|
|
|
|
delete[] ipiv;
|
|
|
|
|
return aMatrix;
|
|
|
|
|
}
|
2023-04-20 15:34:38 +08:00
|
|
|
|
|
|
|
|
Matrix Aurora::interp2(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
|
|
|
|
|
{
|
|
|
|
|
if (aV.getDims() != 2)
|
|
|
|
|
{
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (aX1.getDimSize(0) != aY1.getDimSize(0))
|
|
|
|
|
{
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int columnNum = aV.getDimSize(1);
|
|
|
|
|
int rowNum = aV.getDimSize(0);
|
|
|
|
|
|
|
|
|
|
if(aX.getDimSize(0) != columnNum || aY.getDimSize(0) != rowNum)
|
|
|
|
|
{
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int nx1 = aX1.getDimSize(0);
|
|
|
|
|
std::shared_ptr<double> resultData = std::shared_ptr<double>(Aurora::malloc(nx1), Aurora::free);
|
|
|
|
|
for (int i = 0; i < nx1; ++i)
|
|
|
|
|
{
|
|
|
|
|
std::shared_ptr<double> xResultData = std::shared_ptr<double>(Aurora::malloc(columnNum), Aurora::free);
|
|
|
|
|
for(int j =0; j < columnNum; ++j)
|
|
|
|
|
{
|
|
|
|
|
xResultData.get()[j] = interp1(aY,aV($,j).toMatrix(),aY1(i).toMatrix(),aMethod).getData()[0];
|
|
|
|
|
}
|
|
|
|
|
Matrix xResult(xResultData,std::vector<int>{columnNum});
|
|
|
|
|
resultData.get()[i] = interp1(aX,xResult,aX1(i).toMatrix(),aMethod).getData()[0];
|
|
|
|
|
}
|
|
|
|
|
return Matrix(resultData,std::vector<int>{nx1});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Matrix Aurora::interpn(const Matrix& aX, const Matrix& aY, const Matrix& aV, const Matrix& aX1, const Matrix& aY1, InterpnMethod aMethod)
|
|
|
|
|
{
|
|
|
|
|
return Aurora::interp2(aY,aX,aV,aY1,aX1,aMethod);
|
|
|
|
|
}
|
2023-04-23 09:30:47 +08:00
|
|
|
|
|
|
|
|
Matrix Aurora::std(const Matrix &aMatrix) {
|
|
|
|
|
auto std = Aurora::malloc(aMatrix.getDimSize(1) * aMatrix.getDimSize(2));
|
|
|
|
|
Matrix src = aMatrix.isComplex() ? Aurora::abs(aMatrix) : aMatrix;
|
|
|
|
|
for (int i = 0; i < src.getDimSize(1); ++i) {
|
|
|
|
|
double *p = src.getData() + i * src.getDimSize(0);
|
|
|
|
|
double mean = cblas_dasum(src.getDimSize(0), p, 1) / src.getDimSize(0);
|
|
|
|
|
vdSubI(src.getDimSize(0), p, 1, &mean, 0, p, 1);
|
|
|
|
|
vdSqr(src.getDimSize(0), p, p);
|
|
|
|
|
std[i] = cblas_dasum(src.getDimSize(0), p, 1) / (src.getDimSize(0) - 1);
|
|
|
|
|
}
|
|
|
|
|
vdSqrt(src.getDimSize(1), std, std);
|
|
|
|
|
|
|
|
|
|
return Matrix::New(std,1,aMatrix.getDimSize(1), aMatrix.getDimSize(2));
|
|
|
|
|
}
|
2023-04-23 16:02:08 +08:00
|
|
|
|
|
|
|
|
Matrix Aurora::min(const Matrix &aMatrix, FunctionDirection direction) {
|
|
|
|
|
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
|
|
|
|
std::cerr
|
|
|
|
|
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
|
|
|
|
<< std::endl;
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
switch (direction)
|
|
|
|
|
{
|
|
|
|
|
case All:
|
|
|
|
|
{
|
|
|
|
|
Eigen::Map<Eigen::VectorXd> retV(aMatrix.getData(),aMatrix.getDataSize());
|
|
|
|
|
double * ret = malloc(1);
|
|
|
|
|
ret[0] = retV.array().minCoeff();
|
|
|
|
|
return Matrix::New(ret,1);
|
|
|
|
|
}
|
|
|
|
|
case Row:
|
|
|
|
|
{
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
|
|
|
|
double * ret = malloc(aMatrix.getDimSize(0));
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,aMatrix.getDimSize(0),1);
|
|
|
|
|
retMatrix = srcMatrix.rowwise().minCoeff();
|
|
|
|
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
|
|
|
|
}
|
|
|
|
|
case Column:
|
|
|
|
|
{
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
|
|
|
|
double * ret = malloc(aMatrix.getDimSize(0));
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,1,aMatrix.getDimSize(1));
|
|
|
|
|
retMatrix = srcMatrix.colwise().minCoeff();
|
|
|
|
|
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Matrix Aurora::min(const Matrix &aMatrix, const Matrix &aOther) {
|
|
|
|
|
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
|
|
|
|
std::cerr
|
|
|
|
|
<< (aMatrix.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
|
|
|
|
<< std::endl;
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
if (aOther.getDimSize(2)>1 || aOther.isComplex()) {
|
|
|
|
|
std::cerr
|
|
|
|
|
<< (aOther.getDimSize(2) > 1 ? "min() not support 3D data!" : "min() not support complex value type!")
|
|
|
|
|
<< std::endl;
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
//same shape
|
|
|
|
|
if (aMatrix.compareShape(aOther)){
|
|
|
|
|
double* output = malloc(aMatrix.getDataSize());
|
|
|
|
|
vdFminI(aMatrix.getDataSize(),aMatrix.getData(),1,aOther.getData(),1,output,1);
|
|
|
|
|
return Matrix::New(output,aMatrix);
|
|
|
|
|
}
|
|
|
|
|
// one is scalar
|
|
|
|
|
else if (aMatrix.getDataSize() == 1 || aOther.getDataSize() == 1){
|
|
|
|
|
double scalar = (aMatrix.getDataSize() == 1)?aMatrix.getData()[0]:aOther.getData()[0];
|
|
|
|
|
auto matrix = (aMatrix.getDataSize() == 1)?aOther:aMatrix;
|
|
|
|
|
double* output = malloc(matrix.getDataSize());
|
|
|
|
|
vdFminI(matrix.getDataSize(),matrix.getData(),1,&scalar,0,output,1);
|
|
|
|
|
return Matrix::New(output,matrix);
|
|
|
|
|
}
|
|
|
|
|
else if (aMatrix.getDimSize(1) == 1 || aOther.getDimSize(0) == 1) {
|
|
|
|
|
if (aMatrix.getDimSize(1) == 1){
|
|
|
|
|
double* output = malloc(aOther.getDataSize());
|
|
|
|
|
for (int i = 0; i < aOther.getDimSize(1); ++i) {
|
|
|
|
|
vdFminI(aMatrix.getDataSize(), aMatrix.getData(), 1, aOther.getData() + aOther.getDimSize(0) * i, 1,
|
|
|
|
|
output + aOther.getDimSize(0) * i, 1);
|
|
|
|
|
}
|
|
|
|
|
return Matrix::New(output,aOther);
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
double* output = malloc(aMatrix.getDataSize());
|
|
|
|
|
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
|
|
|
|
vdFminI(aOther.getDataSize(), aOther.getData(), 1, aMatrix.getData() + i, aMatrix.getDimSize(0),
|
|
|
|
|
output + i, aOther.getDimSize(0));
|
|
|
|
|
}
|
|
|
|
|
return Matrix::New(output,aMatrix);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
std::cerr
|
|
|
|
|
<< "min(A,B) with matrix must be like A[MxN] - B[1xN] or A[Mx1] - B[MxN]"
|
|
|
|
|
<< std::endl;
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Matrix Aurora::max(const Matrix &aMatrix, FunctionDirection direction) {
|
|
|
|
|
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
|
|
|
|
std::cerr
|
2023-04-23 17:32:04 +08:00
|
|
|
<< (aMatrix.getDimSize(2) > 1 ? "max() not support 3D data!" : "max() not support complex value type!")
|
2023-04-23 16:02:08 +08:00
|
|
|
<< std::endl;
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
switch (direction)
|
|
|
|
|
{
|
|
|
|
|
case All:
|
|
|
|
|
{
|
|
|
|
|
Eigen::Map<Eigen::VectorXd> retV(aMatrix.getData(),aMatrix.getDataSize());
|
|
|
|
|
double * ret = malloc(1);
|
|
|
|
|
ret[0] = retV.array().maxCoeff();
|
|
|
|
|
return Matrix::New(ret,1);
|
|
|
|
|
}
|
|
|
|
|
case Row:
|
|
|
|
|
{
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
|
|
|
|
double * ret = malloc(aMatrix.getDimSize(0));
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,aMatrix.getDimSize(0),1);
|
|
|
|
|
retMatrix = srcMatrix.rowwise().maxCoeff();
|
|
|
|
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
|
|
|
|
}
|
|
|
|
|
case Column:
|
2023-04-23 17:32:04 +08:00
|
|
|
default:
|
2023-04-23 16:02:08 +08:00
|
|
|
{
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> srcMatrix(aMatrix.getData(),aMatrix.getDimSize(0),aMatrix.getDimSize(1));
|
|
|
|
|
double * ret = malloc(aMatrix.getDimSize(0));
|
|
|
|
|
Eigen::Map<Eigen::MatrixXd> retMatrix(ret,1,aMatrix.getDimSize(1));
|
|
|
|
|
retMatrix = srcMatrix.colwise().maxCoeff();
|
|
|
|
|
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2023-04-23 17:32:04 +08:00
|
|
|
|
|
|
|
|
Matrix Aurora::sum(const Matrix &aMatrix, FunctionDirection direction) {
|
|
|
|
|
if (aMatrix.getDimSize(2)>1 || aMatrix.isComplex()) {
|
|
|
|
|
std::cerr
|
|
|
|
|
<< (aMatrix.getDimSize(2) > 1 ? "sum() not support 3D data!" : "sum() not support complex value type!")
|
|
|
|
|
<< std::endl;
|
|
|
|
|
return Matrix();
|
|
|
|
|
}
|
|
|
|
|
switch (direction)
|
|
|
|
|
{
|
|
|
|
|
case All:
|
|
|
|
|
{
|
|
|
|
|
double * ret = malloc(1);
|
|
|
|
|
ret[0] = cblas_dasum(aMatrix.getDataSize(),aMatrix.getData(),1);
|
|
|
|
|
return Matrix::New(ret,1);
|
|
|
|
|
}
|
|
|
|
|
case Row:
|
|
|
|
|
{
|
|
|
|
|
double * ret = malloc(aMatrix.getDimSize(0));
|
|
|
|
|
for (int i = 0; i < aMatrix.getDimSize(0); ++i) {
|
|
|
|
|
ret[i] = cblas_dasum(aMatrix.getDimSize(1), aMatrix.getData() + i,
|
|
|
|
|
aMatrix.getDimSize(0));
|
|
|
|
|
}
|
|
|
|
|
return Matrix::New(ret,aMatrix.getDimSize(0),1);
|
|
|
|
|
}
|
|
|
|
|
case Column:
|
|
|
|
|
default:
|
|
|
|
|
{
|
|
|
|
|
double * ret = malloc(aMatrix.getDimSize(0));
|
|
|
|
|
for (int i = 0; i < aMatrix.getDimSize(1); ++i) {
|
|
|
|
|
ret[i] = cblas_dasum(aMatrix.getDimSize(0), aMatrix.getData()+aMatrix.getDimSize(0)*i,
|
|
|
|
|
1);
|
|
|
|
|
}
|
|
|
|
|
return Matrix::New(ret,1,aMatrix.getDimSize(1));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|